Linux:线程池

Linux:线程池

    • 线程池概念
    • 封装线程
      • 基本结构
      • 构造函数
      • 相关接口
      • 线程类总代码
    • 封装线程池
      • 基本结构
      • 构造与析构
      • 初始化
      • 启动与回收
      • 主线程放任务
      • 其他线程读取任务
      • 终止线程池
      • 测试
      • 线程池总代码


线程池概念

线程池是一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。

线程池的应用场景:

  1. 需要大量的线程来完成任务,且完成任务的时间比较短。 WEB服务器完成网页请求这样的任务,使用线程池技术是非常合适的。因为单个任务小,而任务数量巨大,你可以想象一个热门网站的点击次数。 但对于长时间的任务,线程池的优点就不明显了
  2. 对性能要求苛刻的应用,比如要求服务器迅速响应客户请求
  3. 接受突发性的大量请求,但不至于使服务器因此产生大量线程的应用。突发性大量客户请求,在没有线程池情况下,将产生大量线程,虽然理论上大部分操作系统线程数目最大值不是问题,但是短时间内产生大量线程可能使内存到达极限,出现错误

接下来本博客就在Linux上实现一个线程池。


封装线程

线程池本质是把多个线程组织起来,然后统一使用这些线程,给它们派发任务,每个线程拿到任务后各自执行。

基本结构

既然要将线程组织起来,我们就要先用一个类来描述一个线程,比如线程的TID,线程的名字等等。

首先定义一个类Thread,其包含以下成员:

template <typename T>
using func_t = std::function<void(T&)>;template <typename T>
class Thread
{
public:
private:pthread_t _tid;          // 线程TIDstd::string _threadName; // 线程名func_t<T> _func;         // 线程执行的函数T _data;                 // 执行函数要传入的参数
};

第一个成员_tid,就是该线程的TID,第二个参数_threadName就是线程的名字。

创建线程的目的,是为了让线程去执行函数,那么当然要有一个成员来记录这个线程执行什么函数。此处第三个成员_func就是被线程执行的函数,其类型为func_t<T>

template <typename T>
using func_t = std::function<void(T&)>;

也即是说func_t<T>类型,是一个void (T&)类型的函数,返回值为空,可以传入一个T类型的参数。而线程的最后一个成员_data就是被传入的参数。

当用户使用这个线程类时,需要给出线程要执行的函数该函数的参数,另外的还要线程的名字


构造函数

弄清需求后,我们就可以很好写出该线程的构造函数了:

Thread(func_t<T> func, const T& data, std::string threadName = "none"): _func(func), _data(data), _threadName(threadName)
{}

构造函数有三个参数,第一个func用于初始化线程调用的函数,第二个data用于初始化要给函数传入的参数,第三个用于指定线程的名字,默认值为none


相关接口

那么我们的线程类又要提供哪些接口?

目前为止我们还没有真正创建一个线程,而是通过类成员保存了线程的相关信息,那么我们就要通过这些线程的相关信息,来创建线程了。

第一个问题便是:函数pthread_create用于创建线程,要指定一个void* (*)(void*)类型的函数指针,但是初始化线程是,用户传入的函数是void (T&)类型,这要咋办?

很简单:先调用一个void* (void*)类型的中间函数threadEntrypthread_create先传入该函数,随后线程就会去执行threadEntry,再在threadEntry内部调用用户指定的函数并传入数据:_func(_data)

我先写一个版本:

template <typename T>
class Thread
{
public:void* threadEntry(void* args){_func(_data);return nullptr;}bool start(){int ret = pthread_create(&_tid, nullptr, threadEntry, nullptr);return ret == 0;}
};

start函数中,通过pthread_create创建了线程,线程的TID交给类成员_tid,随后线程去调用threadEntry,在threadEntry内部调用_func(_data),即调用用户传入的函数。

这可行吗?我尝试编译一下:

在这里插入图片描述

编译报错了,报错为:invalid use of non-static member function,简单来说就是:错误的调用了非静态成员函数。

为什么呢?不妨再仔细想想threadEntry的类型真的是void* (*)(void*)吗?该函数处于类的内部,属于非静态成员函数,第一个参数为this指针,因此我们要把这个函数用static修饰,让其变为静态成员函数,此时它的类型才是void* (*)(void*)

static void* threadEntry(void* args)
{_func(_data);return nullptr;
}

现在问题又来了,由于没有this指针,该函数是得不到_func_data这两个成员的,这该怎么办?

别忘了,pthread_create是可以给函数传参的,我们只需要把this指针作为threadEntry的参数传入,随后通过this指针访问_func_data

template <typename T>
class Thread
{
public:static void* threadEntry(void* args){Thread* self = static_cast<Thread*>(args);self->_func(self->_data);return nullptr;}bool start(){int ret = pthread_create(&_tid, nullptr, threadEntry, this);return ret == 0;}
};

pthread_create中,第四个参数传入this,那么函数threadEntry的第一个参数args就是this指针了,通过 static_cast<Thread*>(args)将其转化为Thread*类型,赋值给self变量。此时self->_func(self->_data);就可以调用函数了。

最后再支持一下datach线程分离,join线程等待:

void deatch()
{pthread_detach(_tid);
}void join()
{pthread_join(_tid, nullptr);
}

现在我们封装好了一个线程类

实验一下这个线程类是否有效:

void test(int args)
{while(true){cout << args << endl;sleep(1);}
}int main()
{Thread<int> t(test, 2024, "thread-1");t.start();t.join();return 0;
}

main函数中,Thread<int> t(test, 5, "thread-1")定义了一个线程对象,执行的函数为test,给test传入的参数为2024,线程名为thread-1

如果创建成功,那么线程就会去执行test函数,并且循环输出2024

输出结果:

在这里插入图片描述

输出正确,说明我们的线程类没有问题。


线程类总代码

我把这个Thread类放进头文件thread.hpp中,方便后续使用。

thread.hpp代码如下:

#pragma once#include <iostream>
#include <functional>#include <unistd.h>
#include <pthread.h>template <typename T>
using func_t = std::function<void(T&)>;template <typename T>
class Thread
{
public:Thread(func_t<T> func, const T& data, std::string threadName = "none"): _func(func), _data(data), _threadName(threadName){}static void* threadEntry(void* args){Thread* self = static_cast<Thread*>(args);self->_func(self->_data);return nullptr;}bool start(){int ret = pthread_create(&_tid, nullptr, threadEntry, this);return ret == 0;}void deatch(){pthread_detach(_tid);}void join(){pthread_join(_tid, nullptr);}private:pthread_t _tid;          // 线程TIDstd::string _threadName; // 线程名func_t<T> _func;         // 线程执行的函数T _data;                 // 执行函数要传入的参数
};

封装线程池

现在我们通过类Thread描述了一个线程,那么就可以用线程池来组织这些线程了。

当前目录结构如下:

在这里插入图片描述

内部有三个文件,第一个文件是主程序main.cpp,以及两个自己的头文件,Thread.hpp是刚刚封装的线程类,我们将在ThreadPool.hpp内部实现线程池。

基本结构

线程池的运行模式如下:

线程池内部维护多个线程和一个任务队列,主线程往任务队列中放任务,线程池内部的线程则执行任务队列中的任务。

那么毫无疑问的就是:线程池内部至少要有一个数组管理多个线程,以及一个队列来放任务!

线程池threadPool内部的成员如下:

template <typename T>
class threadPool
{
private:int _threadNum;  // 线程总数int _waitNum;    // 正在等待任务的线程数目bool _isRunning; // 当前线程池是否运行std::vector<Thread<std::string>> _threads; // 用数组管理多个线程std::queue<T> _taskQueue;                  // 任务队列
};

threadPool中,有两个成员:数组_threads,任务队列_task_queue

我们先前封装的Thread中,模板参数T用于给线程执行的函数指定参数类型。在此我固定其为string类型,后续线程执行函数时,该参数用于传入线程的名字。

另外的,我还额外指定了三个成员:

  • _threadNum:标识当前线程池的线程总数
  • _waitNum:当前有几个线程在等待任务
  • _isRunning:用于终止线程池

这三个成员都是对线程池本身的描述。

但是我们目前忽略了一个问题,也是多线程编程最重要的问题:线程的互斥与同步

我们的任务是:主线程往队列放任务,其它线程从队列拿任务。那么就要考虑以下几个问题:

  1. 多个线程可以同时拿任务吗?不能,任务队列是临界资源,线程与线程之间要互斥
  2. 可以主线程放任务时,其他线程拿任务吗?不能,主线程与执行任务的线程也要互斥

由于它们都在竞争任务队列这一个资源,我们只要用一把互斥锁即可完成以上的所有互斥。主线程和执行任务的线程都去争夺一把锁,争到锁的线程才可以访问任务队列。

接下来就是同步问题:

毫无疑问的是:只有任务队列里面有任务时,线程才能去任务队列中拿任务。因此要主线程先放任务,其他线程后拿任务,这就要一个条件变量来维护

因此我们还要两个成员:

template <typename T>
class threadPool
{
private:int _threadNum;  // 线程总数int _waitNum;    // 正在等待任务的线程数目bool _isRunning; // 当前线程池是否运行std::vector<Thread<std::string>> _threads; // 用数组管理多个线程std::queue<T> _taskQueue;                  // 任务队列pthread_mutex_t _mutex; // 互斥锁,维护任务队列pthread_cond_t _cond;   // 条件变量,保证主线程与其他线程之间的同步
};

构造与析构

接下来先写线程池的构造函数和析构函数,在构造函数内部要完成的自然就包括:_mutex的初始化,_cond的初始化。而析构函数的任务自然是销毁它们。

template <typename T>
class threadPool
{
public:threadPool(int threadNum = 5): _threadNum(threadNum), _waitNum(0), _isRunning(false){pthread_mutex_init(&_mutex, nullptr);pthread_cond_init(&_cond, nullptr);}~threadPool(){pthread_mutex_destroy(&_mutex);pthread_cond_destroy(&_cond);}
};

用户创建线程池的时候,只要输入一个数字,表名该线程池内部要有几个线程即可。一开始_isRunningfalse,表示线程还没有开始运行。

构造函数只是创建了锁,条件变量,以及各个线程内部的基本信息而已,此时数组_threads,还没有任何元素。也就是说我们目前连线程对象都没创建出来。


初始化

我们在此用一个init函数来初始化线程,创建出线程对象,创建Thread对象时,要传入三个参数:

Thread(func_t<T> func, const T& data, std::string threadName = "none")

这是我们刚刚写的Thread构造函数,第一个参数传线程要调用的函数,第二个参数传func的第一个参数,第三个参数传线程名。

在此我们让线程去执行一个叫做handlerTask的函数,这个函数内部实现线程的到任务队列拿任务的过程。

handlerTask的第一个参数也是线程的名字,以便在handlerTask内部识别是哪一个线程执行了任务。

如下:

template <typename T>
class threadPool
{
public:void handlerTask(std::string){//执行任务队列的任务}void init(){for (int i = 1; i <= _threadNum; i++){std::string name = "Thread-" + std::to_string(i);_threads.emplace_back(handlerTask, name, name);}_isRunning = true;}
};

init中,一个for循环创建_threadNum个线程,第i号线程的名字是Thread-i

数组尾插时,(handlerTask, name, name)三个参数,分别是:线程要执行的函数线程名线程名。我们在此传入了两个线程名,但是作用不一样。一个是handlerTask的参数,一个是Thread内部的成员。

所以线程构建完毕后,_isRunning = true,表示线程开始运作了。

但是以上代码还是犯了一个相同的错误,Thread的函数类型要求是void (T&),我们限制了T = string,那就是void (string&)。但是handlerTask是非静态成员函数,所以要加static

在此我用C++中的包装器bind来实现:

void init()
{auto func = bind(&threadPool::handlerTask, this, std::placeholders::_1);for (int i = 1; i <= _threadNum; i++){std::string name = "Thread - " + std::to_string(i);_threads.emplace_back(func, name, name);}_isRunning = true;
}

通过包装器,我把handlerTask的第一个参数绑定为了this,使得类型变为function<void(string&)>,从而符合Thread的构造函数。可以理解为,此时变量func就是函数handlerTask,不过类型变为了function<void(string&)>,原先的第一个参数固定为this指针。

这个handlerTask函数我们稍后实现。


启动与回收

到目前为止,我们已经创建好了一批线程,并且指定了指向handlerTask函数,但是限制线程还没有被启动。当时我们封装线程类时,给Therad一个start来启动线程。此处的线程池也要一个allStart来调用所有线程start。另外的,也要一个allJoin来调用所有的join,回收线程。

代码:

template <typename T>
class threadPool
{
public:void allStart(){for (auto& th : _threads)th.start();}void allJoin(){for (auto& th : _threads)th.join();}
};

主线程放任务

现在先写一个enQueue接口,让主线程往任务队列中投放任务。

投放任务的要求是:

  1. 访问队列要与其他线程互斥,即对_mutex加锁
  2. 添加任务后,此时一个线程就可以去访问任务队列了,也就是线程同步

代码:

template <typename T>
class threadPool
{
public:void enQueue(const T& task){pthread_mutex_lock(&_mutex);if (_isRunning){_taskQueue.push(task);if (_waitNum > 0)pthread_cond_signal(&_cond);}pthread_mutex_unlock(&_mutex);}
};

函数的参数为const T& task,即我们的任务类型是T,这个T最好是一个可调用对象,后续其它线程从任务队列拿任务时,就可以调用这个函数

首先对_mutex加锁,确保主线程投放任务时,没有其他线程正在访问队列。随后通过push把这个任务放进队列中。如果waitNum > 0,说明当前有线程在等待任务,通过pthread_cond_signal唤醒一个线程,让他来执行任务。

一切完毕后,释放自己的锁。


其他线程读取任务

现在就到了线程池最复杂的一部分,那就是其他线程读取任务的过程。

  1. 线程要保持互斥,从任务队列拿任务时,要对_mutex加锁
  2. 其它线程要与主线程同步,当任务队列为空,就去_cond下面等待

先写一个雏形:

template <typename T>
class threadPool
{
public:void handlerTask(std::string name){while (true){pthread_mutex_lock(&_mutex);while (_taskQueue.empty()){_waitNum++;pthread_cond_wait(&_cond, &_mutex);_waitNum--;}T task = _taskQueue.front();_taskQueue.pop();std::cout << name << " get a task..." << std::endl;pthread_mutex_unlock(&_mutex);task();}}
};

访问队列前,首先对_mutex加锁,保证互斥。随后进行条件判断,taskQueue是否有任务,如果有任务,就直接拿走任务然后执行。如果没有任务,就去_cond下面等待。此时_waitNum++表示等待的线程多了一个,当从pthread_cond_wait等待结束后,就要_waitNum--

这个地方套了一个while循环,而不是if语句,这是因为哪怕当前线程被主线程唤醒了,也有可能发生伪唤醒,其实_taskQueue内部根本没有任务。所以还要进入下一次while判断,确保访问_taskQueue时一定是有任务的

当从while出来后,此时任务队列一定有任务,所以可以放心调用frontpop接口。拿到任务后,赋值给task。这里要先解锁,后调度task。因为调度task时,已经不算访问临界资源了,而调度函数的时间可能很长,此时先把锁释放掉,让其他线程拿任务,而不是自己执行完任务后才让别的线程拿任务,这样和单线程就没有区别了。

但是目前还有一个问题:如果线程访问任务队列时,线程池已经被终止了咋办?

线程池的终止与否,是通过成员_isRunning来判定的,在执行任务时判断一下_isRunning的值:

  • 如果当前没终止:正常运行
  • 如果当前终止了:
    • 如果任务队列还有任务:把任务执行完
    • 如果任务队列没任务:当前线程退出

那么我们的代码就变成下面这样:

template <typename T>
class threadPool
{
public:while (true){pthread_mutex_lock(&_mutex);while (_taskQueue.empty() && _isRunning){_waitNum++;pthread_cond_wait(&_cond, &_mutex);_waitNum--;}//线程池终止了,并且队列中没有任务了 -> 线程退出if (_taskQueue.empty() && !_isRunning){pthread_mutex_unlock(&_mutex);std::cout << name << " quit..." << std::endl; break;//线程离开while循环,同时线程退出}//走到这一步:一定还有任务要执行,不论线程池有没有终止,都先把任务做完T task = _taskQueue.front();_taskQueue.pop();std::cout << name << " get a task..." << std::endl;pthread_mutex_unlock(&_mutex);task();}
};

以上代码大致分为三个区域:第一个while判断_taskQueue.empty() && _isRunning,如果进条件变量等待,那么必须是:线程池还没终止,并且当且队列为空。

如果线程池终止了,那么此时要么去拿任务,要么直接退出。如果队列不为空,毫无疑问就去拿任务。

随后进入第二个判断语句if (_taskQueue.empty() && !_isRunning),即判断刚刚的while循环是哪一种情况结束的。如果是线程池结束,并且任务队列为空,那么就终止这个线程。剩下的情况,就是任务队列有任务,此时不论线程有没有退出,都要把任务拿走执行掉。


终止线程池

终止线程池也不仅仅是直接_isRunning = false这么简单,要考虑一下问题:

  1. 如果在stop时,有线程正在调用handlerTask函数怎么办?

此时多个线程访问变量_isRunning,就有可能会造成线程安全问题,所以访问_isRunning时也要加锁,由于之前所有的访问_siRuiing的操作,都在_mutex锁中,所以和之前共用一把锁即可。

  1. 如果stop后,还有线程在_cond下面等待怎么办?

如果线程一直在_cond下面等待,就会导致无法退出,此时在_isRunning = false之后,还要通过pthread_cond_broadcast唤醒所有等待的线程,让它们重新执行handlerTask的逻辑,从而正常退出。

代码:

template <typename T>
class threadPool
{
public:void stop(){pthread_mutex_lock(&_mutex);_isRunning = false; //终止线程池pthread_cond_broadcast(&_cond); //唤醒所有等待的线程pthread_mutex_unlock(&_mutex);}
};

测试

现在我们已经有一个比较完整的线程池代码了,我们用以下代码测试一下:

int test()
{int a = rand() % 100 + 1;int b = rand() % 100 + 1;std::cout << a << " + " << b << " = " << a + b << std::endl;return a + b;
}int main()
{srand(static_cast<unsigned int>(time(nullptr)));threadPool<int(*)(void)> tp(3);tp.init();tp.allStart();for (int i = 0; i < 10; i++){tp.enQueue(test);sleep(1);}tp.stop();tp.allJoin();return 0;
}

通过threadPool<int(*)(void)> tp(3);创建有三个线程的线程池,执行的任务类型为int(void),但是要注意,此处要传入可调用对象,C++的可调用对象有:函数指针仿函数,lambda表达式。此处我用了函数指针int(*)(void)

接着init初始化线程池,此时线程对象Thread已经创建出来了,但是还有没创建线程。随后调用allStart,此时才真正创建了线程。

然后进入一个for循环,给任务队列派发任务,总共派发十个任务,都是函数test,其中生成两个随机数的加法。

最后调用stop终止退出线程池,此时线程也会一个个退出,然后调用allJoin回收所有线程。

输出结果:

在这里插入图片描述

最后可以看到,我们创建了三个线程,每个线程都依次拿到了任务,并且执行后计算出了结果。十个任务结束后,三个线程依次退出。


线程池总代码

我将线程池封装在文件ThreadPool.hpp中:

#pragma once#include <iostream>
#include <vector>
#include <queue>
#include <string>#include <unistd.h>
#include <pthread.h>#include "Thread.hpp"template <typename T>
class threadPool
{
public:threadPool(int threadNum = 5): _threadNum(threadNum), _waitNum(0), _isRunning(false){pthread_mutex_init(&_mutex, nullptr);pthread_cond_init(&_cond, nullptr);}~threadPool(){pthread_mutex_destroy(&_mutex);pthread_cond_destroy(&_cond);}void enQueue(const T& task){pthread_mutex_lock(&_mutex);if (_isRunning){_taskQueue.push(task);if (_waitNum)pthread_cond_signal(&_cond);}pthread_mutex_unlock(&_mutex);}void handlerTask(std::string name){while (true){pthread_mutex_lock(&_mutex);while (_taskQueue.empty() && _isRunning){_waitNum++;pthread_cond_wait(&_cond, &_mutex);_waitNum--;}//线程池终止了,并且队列中没有任务了 -> 线程退出if (_taskQueue.empty() && !_isRunning){pthread_mutex_unlock(&_mutex);std::cout << name << " quit..." << std::endl; break;//线程离开while循环,同时线程退出}//走到这一步:一定还有任务要执行,不论线程池有没有终止,都先把任务做完T task = _taskQueue.front();_taskQueue.pop();std::cout << name << " get a task..." << std::endl;pthread_mutex_unlock(&_mutex);task();}}void init(){auto func = bind(&threadPool::handlerTask, this, std::placeholders::_1);for (int i = 1; i <= _threadNum; i++){std::string name = "Thread - " + std::to_string(i);_threads.emplace_back(func, name, name);}_isRunning = true;}void stop(){pthread_mutex_lock(&_mutex);_isRunning = false; //终止线程池pthread_cond_broadcast(&_cond); //唤醒所有等待的线程pthread_mutex_unlock(&_mutex);}void allStart(){for (auto& th : _threads)th.start();}void allJoin(){for (auto& th : _threads)th.join();}private:int _threadNum;  // 线程总数int _waitNum;    // 正在等待任务的线程数目bool _isRunning; // 当前线程池是否运行std::vector<Thread<std::string>> _threads; // 用数组管理多个线程std::queue<T> _taskQueue;                  // 任务队列pthread_mutex_t _mutex; // 互斥锁,维护任务队列pthread_cond_t _cond;   // 条件变量,保证主线程与其他线程之间的同步
};

测试代码main.cpp

#include <iostream>
#include <vector>
#include <string>
#include <ctime>
#include <cstdlib>#include <unistd.h>
#include <pthread.h>#include "ThreadPool.hpp"int test()
{int a = rand() % 100 + 1;int b = rand() % 100 + 1;std::cout << a << " + " << b << " = " << a + b << std::endl;return a + b;
}int main()
{srand(static_cast<unsigned int>(time(nullptr)));threadPool<int(*)(void)> tp(3);tp.init();tp.allStart();for (int i = 0; i < 10; i++){tp.enQueue(test);sleep(1);}tp.stop();tp.allJoin();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/28509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32CubeMX配置-外部中断配置

一、简介 MCU为STM32G070&#xff0c;配置为上升沿触发外部中断&#xff0c;在上升沿外部中断回调函数中进行相关操作。 二、外部中断配置 查看规格书中管教描述&#xff0c;找到I/O对应的外部中断线&#xff0c;然后进行如下上升沿触发外部中断配置。 三、生成代码 调用上升沿…

JavaScript 规范霍夫曼编码

霍夫曼编码是一种无损数据压缩算法&#xff0c;其中数据中的每个字符都分配有可变长度的前缀代码。出现频率最低的字符获得最大代码&#xff0c;出现频率最高的字符获得最小代码。使用这种技术对数据进行编码非常简单且高效。但是&#xff0c;解码使用此技术生成的比特流效率低…

Parallels Desktop 19 激活码 - 苹果 Mac 最新版 PD 19激活密钥虚拟机下载 (支持Win11/macOS Sonoma)

Parallels Desktop 被称为 macOS 上强大的虚拟机软件。可以在 Mac 下同时模拟运行 Win、Linux、Android 等多种操作系统及软件而不必重启电脑&#xff0c;并能在不同系统间随意切换。 最新版 Parallels Desktop 19 (PD19) 完全支持 macOS Sonoma、Ventura 和 Windows 11 / Win…

【Ardiuno】实验使用OPT语音模块播放语音(图文)

当我们需要在程序中播放语音内容时&#xff0c;就需要使用到语音模块&#xff0c;今天我们就来实验一下使用OPT语音模块来方法语音。 const int voicePin 5; const int voiceBusyPin 18; const int testLEDPin 2;unsigned long pmillis 0;int busyVal 0; …

LeetCode | 125.验证回文串

这道题一开始的想法是把原字符串的非数字英文字符去掉&#xff0c;然后判断剩下的字符串是否为回文串即可&#xff0c;其中去掉非数字英文字符可以遍历一遍字符串依次处理&#xff0c;也可以用正则表达式&#xff0c;然后判断是否是回文串只需要两个指针&#xff0c;一头一尾&a…

OpenCV目标识别

一 图像轮廓 具有相同颜色或强度的连续点的曲线。 图像轮廓的作用 可以用于图像分析 物体的识别与检测 注意 为了检测的准确性&#xff0c;需要先对图像进行二值化或Canny操作。 画轮廓时会修改输入的图像。 轮廓查找的API findContours(img,mode,ApproximationMode,...)…

upload-labs第八关教程

upload-labs第八关教程 一、源代码分析代码审计 二、绕过分析点绕过上传eval.php使用burp suite进行抓包修改放包&#xff0c;查看是否上传成功使用中国蚁剑进行连接 一、源代码分析 代码审计 $is_upload false; $msg null; if (isset($_POST[submit])) {if (file_exists(U…

推箱子-小游戏

学习目标&#xff1a; 巩固Java基础&#xff0c;数据类型、二维数组、条件语句等&#xff1b; 效果展示&#xff1a;

CSS【详解】样式选择器的优先级(含提升优先级的方法)

数值越大&#xff0c;优先级越高&#xff0c;尽量保持较低的优先级&#xff0c;以便使用更高优先级的选择器重置样式 0级——通配选择器、选择符和逻辑组合伪类。逻辑组合伪类有:not()、:is()和:where等&#xff0c;这些伪类本身并不影响CSS优先级&#xff0c;影响优先级的是括…

Python基础用法 之 变量

1.变量的定义 变量的作用&#xff1a;是⽤来保存数据的。定义的语法&#xff1a;变量名 数据值使用&#xff1a;直接使⽤变量名 即可使⽤变量中存储的数据。注意&#xff1a;变量必须先定义后使用。 (即 必须 先存⼊数据 才能 获取数据) 。 # 需求 1, 定义⼀个变量 保存你的名…

(超详细)基于动态顺序表实现简单的通讯录项目

前言&#xff1a; 我们在上一章节用c语言实现了线性表中的的动态顺序表&#xff0c;那么顺序表就只是顺序表吗&#xff1f;当然不是&#xff0c;使用顺序表结构可以实现很多项目&#xff0c;许多项目的数据结构都会用到顺序表&#xff0c;本章节我们就要使用顺序表实现一个简易…

【论文阅读】AttnDreamBooth | 面向文本对齐的个性化图片生成

文章目录 1 动机2 方法3 实验 1 动机 使用灵活的文本控制可以实现一些特定的概念的注入从而实现个性化的图片生成。 最经典的比如一些好玩的动漫人物的概念&#xff0c;SD大模型本身是不知道这些概念的&#xff0c;但是通过概念注入是可以实现的从而生成对应的动漫人物 两个…

创建阿里云的免费镜像仓库

1、登录 阿里云 首先进入阿里云的官网&#xff0c;如果没有注册的需要先注册&#xff0c;这里就不过多的讲解了。 2、搜索 登录完毕后点击右上角的控制台 进入管理页面。或者直接在搜索框中输入容器镜像服务 点击进入 这里我是已经开通过了&#xff0c;如果你还没有开通的…

SpringBoot 第一天

什么是Spring Boot 学习过spring&#xff0c;并且做过项目的估计都经历过&#xff0c;xml文件的繁杂配置&#xff0c;让人眼花缭乱&#xff0c;且极易出错&#xff0c;因此 Spring 一度被称为“配置地狱” 为了简化 Spring 应用的搭建和开发过程&#xff0c;Pivotal 团队在 S…

什么是git?

前言 Git 是一款免费、开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。是的&#xff0c;我对git的介绍就一条&#xff0c;想看简介的可以去百度一下&#x1f618;&#x1f618;&#x1f618; 为什么要用git&#xff1f; OK&#xff0c;想象一下…

《C语言》文件操作

文章目录 一、认识文件1、文件的概念2、程序文件3、数据文件4、文件名 三、二进制文件和文本文件四、文件的打开和关闭1、流2、标准流3、文件指针4、文件的关闭和打开 四、文件的顺序读写文件的随机读写1、fseek2、ftell3、rewind4.int origin 一、认识文件 主要讨论数据文件 1…

Javaweb06-Jsp技术

Jsp技术 一.Jsp的运行原理 **概述&#xff1a;**JSP是Java服务器页面&#xff0c;既可以写静态页面代码&#xff0c;也可以写动态页面代码 **特点&#xff1a;**跨平台性&#xff0c;业务代码相分离&#xff0c;组件重用&#xff0c;预编译 运行原理&#xff1a; 客户端发生…

如何设计一个秒杀系统?

这篇分享源自之前购买的极客时间课程《如何设计一个秒杀系统》&#xff0c;以及书籍《亿级流量网站架构核心技术》。 这两个讲的都是关于高并发系统设计的&#xff0c;感觉收获颇多。 本篇内容对核心要点进行了摘录&#xff0c;也结合网上一些文章&#xff0c;希望能分享所得…

运算符及表达式+基本语句和函数使用的详细讲解

运算符及表达式 运算符及表达式 在C语言中&#xff0c;运算符是用于执行特定操作的符号&#xff0c;而表达式则是由运算符和操作数组成的式子。 1) 运算符 运算符的目数 单目运算符&#xff1a;只需要一个操作数&#xff0c;如 !&#xff08;逻辑非&#xff09;、&#xf…

简易开发一个app

即时设计网站 即时设计 - 可实时协作的专业 UI 设计工具 需要先设计好UI界面 上传到codefun 首次需要安装 自动生成代码 打开hb软件 新建项目 打开创建的项目 删除代码 复制代码过去 下载图片 将图片放到文件夹里 改为这种格式 index.vue 如果不需要uni-app导航栏可以修改 …