为什么说Python 是胶水语言?

​ "Python 是胶水语言"这一说法是指它很擅长将不同的程序或代码库连接在一起,能够让来自不同编程语言或框架的组件无缝协作。Python 具有丰富的库和简单的语法,使得它可以轻松调用其他语言编写的程序或使用不同技术栈的模块。

​ 以下是几个具体的实例,展示了Python 作为胶水语言的特性:

实例 1:调用 C/C++ 代码

​ 使用ctypes 库可以方便地调用 C 函数。
假设有一个简单的 C 函数:

// example.c
#include <stdio.h>int add(int a, int b) {return a + b;
}void say_hello() {printf("Hello, World!\n");
}

采用编译它为共享库:

gcc -shared -o libexample.so -fPIC example.c

然后用 Python 调用这个库:

# example.py
import ctypes# 加载共享库
lib = ctypes.CDLL('./libexample.so')# 定义函数原型
lib.add.argtypes = (ctypes.c_int, ctypes.c_int) # 表示该函数接收两个整数参数
lib.add.restype = ctypes.c_int # 设置 `add` 函数的返回类型# 调用 C 函数
result = lib.add(3, 5)
print(f'Result of add(3, 5): {result}')# 调用无参数 C 函数
lib.say_hello()

运行这个 Python 脚本,你会看到:

在这里插入图片描述

实例 2:集成数据库和 Web 服务

​ Python 强大的库生态,使得它在集成不同技术栈方面非常有优势。例如,连接一个数据库并通过 Flask 框架提供一个简单的 Web API。

# Install required packages:
# pip install flask sqlalchemyfrom flask import Flask, jsonify, request
from sqlalchemy import create_engine, Column, Integer, String, Sequence
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmakerapp = Flask(__name__)
Base = declarative_base()# 创建数据库表 User(id, name, age)
class User(Base):__tablename__ = 'users'id = Column(Integer, Sequence('user_id_seq'), primary_key=True)name = Column(String(50))age = Column(Integer)# 使用的是 SQLite 文件数据库,数据存储到本地文件中,程序结束后数据也会被保留engine = create_engine('sqlite:///mydatabase.db')  # 使用文件存储的 SQLite 数据库
Base.metadata.create_all(engine)  # 创建所有的表Session = sessionmaker(bind=engine)  # 这个Session对象实际上是一个数据库会话或连接,它用于执行数据库操作(如查询、插入、更新、删除等)。
session = Session()# 添加一些数据
new_user = User(name='Bobo', age=52)
session.add(new_user)
session.commit()@app.route('/users', methods=['GET'])
def get_users():users = session.query(User).all()return jsonify([{'id': user.id, 'name': user.name, 'age': user.age} for user in users])@app.route('/user', methods=['POST'])
def add_user():data = request.jsonnew_user = User(name=data['name'], age=data['age'])session.add(new_user)session.commit()return jsonify({'id': new_user.id})if __name__ == '__main__':app.run(debug=True)

​ 这个脚本使用 SQLAlchemy连接 SQLite 数据库,并且通过 Flask 框架提供了一个 Web 接口。运行这个脚本并访问 http://127.0.0.1:5000/users 获取表中记录信息。

​ 使用 http://127.0.0.1:5000/user,访问在本程序中会出现如下错误,出现如下 Method Not Allowed。 错误的原因是因为 HTTP 方法错误。访问 URL http://127.0.0.1:5000/user 时,浏览器默认使用 GET 方法请求,而代码中,/user 端点只允许 POST 方法。
在这里插入图片描述

我们可以使用cURL来发送POST请求:

结合之前的 Flask 示例,我们可以使用 cURL 向我们的 Flask 应用发送一个 POST 请求来添加用户:在 Git Bash
curl -X POST -H "Content-Type: application/json" -d '{"name": "Bo", "age": 30}' http://127.0.0.1:5000/user在 Windows 命令提示符(CMD)或 PowerShell
curl -X POST -H "Content-Type: application/json" -d "{\"name\": \"Bobo\", \"age\": 30}" http://127.0.0.1:5000/user注意:
1. 双引号问题:在 Windows CMD 中,双引号会被用来包裹整个字符串,内部的双引号需要进行转义。 
2. 单引号和双引号的区别:在 Unix 风格的 Shell(如 Git Bash)中,你可以使用单引号包裹整个字符串,JSON 字符串内部的引号不需要转义。建议用Git Bash来测试

​ 第二个实例展示了如何利用Python作为胶水语言,将不同的技术和组件集成在一起进行协作。具体来说,它通过几个方面体现了Python的胶水作用:

1. 数据库连接与操作

​ 在该实例中,使用了SQLAlchemy库与SQLite数据库进行连接和操作。SQLAlchemy是Python中一个非常强大的ORM(对象关系映射)框架,它允许开发者使用面向对象的方式来操作数据库。

代码片段:

from flask import Flask, jsonify, request
from sqlalchemy import create_engine, Column, Integer, String, Sequence
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmakerapp = Flask(__name__)
Base = declarative_base()# 创建数据库表 User(id, name, age)
class User(Base):__tablename__ = 'users'id = Column(Integer, Sequence('user_id_seq'), primary_key=True)name = Column(String(50))age = Column(Integer)# 使用的是 SQLite 文件数据库,数据存储到本地文件中,程序结束后数据也会被保留engine = create_engine('sqlite:///mydatabase.db')  # 使用文件存储的 SQLite 数据库
Base.metadata.create_all(engine)  # 创建所有的表Session = sessionmaker(bind=engine)  # 这个Session对象实际上是一个数据库会话或连接,它用于执行数据库操作(如查询、插入、更新、删除等)。
session = Session()# 添加一些数据
new_user = User(name='Bobo', age=52)
session.add(new_user)
session.commit()
2. 提供Web服务

​ 实例中使用了Flask框架来提供Web服务。Flask是一个轻量级的Web应用框架,适合快速开发和部署Web应用。通过Flask框架,可以轻松定义API端点,并处理HTTP请求和响应。

代码片段:

@app.route('/users', methods=['GET'])
def get_users():users = session.query(User).all()return jsonify([{'id': user.id, 'name': user.name, 'age': user.age} for user in users])@app.route('/user', methods=['POST'])
def add_user():data = request.jsonnew_user = User(name=data['name'], age=data['age'])session.add(new_user)session.commit()return jsonify({'id': new_user.id})if __name__ == '__main__':app.run(debug=True)
3. 数据格式转换

​ 通过jsonify函数,实例实现了将Python对象(如列表和字典)转换为JSON格式的HTTP响应。这体现了Python在数据格式转换和处理方面的灵活性。

代码片段:

from flask import jsonify@app.route('/users', methods=['GET'])
def get_users():users = session.query(User).all()return jsonify([{'id': user.id, 'name': user.name, 'age': user.age} for user in users])
4. 跨模块和库的协作

​ 该实例展示了如何将不同功能的库和模块结合在一起工作。比如,Flask负责处理Web请求和响应,而SQLAlchemy负责数据库操作。Python通过其简单的语法和强大的库生态,使得整合这些组件变得非常方便和高效。

5. 使用第三方库

SQLAlchemy和 Flask 都是Python的第三方库,Python的胶水功能在这里表现为它能够无缝地集成和使用这些库以实现复杂的功能,而不需要开发者编写大量的底层代码。

​ 综上所述,这个实例在数据库连接与操作、提供Web服务、数据格式转换、不同模块和库的协作以及第三方库的使用方面,展示了Python作为胶水语言将各种不同技术和组件整合起来的强大能力。

实例 3:控制和管理系统进程

​ 通过 Python 提供的 subprocess 库,你可以轻松地调用和管理系统进程。

import subprocess# 运行一个简单的系统命令适用于Windows平台
result = subprocess.run(['cmd', '/c', 'dir'], capture_output=True, text=True) # 使用cmd命令解释器,并通过 `/c` 参数执行 `dir` 命令。
print(result.stdout)# 运行另一个 Python 脚本
result = subprocess.run(['python', 'other_script.py'], capture_output=True, text=True)
print(result.stdout)

​ 第三个实例展示了如何使用 Python 的 subprocess 模块来调用和管理系统级别的命令和其他 Python 脚本。这些功能在以下几个方面展示了 Python 作为胶水语言的能力:

1. 调用系统命令

​ Python 可以通过 subprocess 模块轻松地调用和执行系统命令。这使得 Python 能够扮演脚本语言的角色,用于自动化各种系统管理任务,与操作系统直接交互。

import subprocess# 运行一个简单的系统命令适用于Windows平台
result = subprocess.run(['cmd', '/c', 'dir'], capture_output=True, text=True) # 使用cmd命令解释器,并通过 `/c` 参数执行 `dir` 命令。
print(result.stdout)

​ 在这个例子中,Python 调用系统自带的dir/c命令,列出当前目录下的文件并将结果输出。这展示了 Python 与操作系统之间的无缝集成。

2. 执行其他 Python 脚本

​ 除了系统命令,Python 还可以调用其他 Python 脚本,执行这些脚本并捕获其输出。这使得 Python 可以作为主调度器,将多个 Python 脚本整合到一个更大的应用程序或工作流程中。

# 运行另一个 Python 脚本
result = subprocess.run(['python', 'other_script.py'], capture_output=True, text=True)
print(result.stdout)

​ 这个例子展示了如何通过 Python 调用另一个 Python 脚本 other_script.py 并获取其输出。这在多脚本项目或分布式系统中尤其有用。

3. 捕获和处理外部命令的输出

​ 通过 capture_output=Truetext=True 参数,Python 可以捕获并直接处理外部命令的输出,便于后续的逻辑处理或数据分析。这使得 Python 可以整合外部工具的功能,将它们的输出纳入到整个应用程序的工作流程中。

# 运行一个简单的系统命令适用于Windows平台
result = subprocess.run(['cmd', '/c', 'dir'], capture_output=True, text=True)
print(result.stdout)

在这个例子中,Python 捕获了 ls -l 命令的输出,并将其作为字符串处理和打印。

4. 统一的错误处理机制

subprocess 模块还提供了统一的错误处理机制。当外部命令失败时,Python 可以捕获错误信息并进行相应的处理。这使得错误管理变得更加简单和一致。

try:result = subprocess.run(['some_non_existing_command'], capture_output=True, text=True, check=True)
except subprocess.CalledProcessError as e:print(f"Command failed with exit status {e.returncode}")print(e.output)

在这个例子中,如果外部命令失败,Python 可以捕获异常并处理错误信息,提供更好的错误管理能力。

5. 平台独立性

​ Python 的 subprocess 模块是跨平台的,这意味着同样的代码可以在不同操作系统上运行,而不需要做多余的修改。这极大地提高了代码的可移植性和维护性。

import subprocess# 运行一个简单的系统命令 Linux下
result = subprocess.run(['ls', '-l'], capture_output=True, text=True)
print(result.stdout)

无论是在 Linux、macOS 还是 Windows,这段代码都能够工作(在 Windows 上需要将 ls -l 换成相应的命令,例如 dir)。

6. 管道和数据流

subprocess 模块允许我们通过管道将不同进程的输入和输出连接起来,形成数据流。这使得 Python 可以将多个独立的程序组合起来,共同完成一个复杂任务。

# Example: Using pipeline
import subprocess
# 第一阶段:使用 echo 产生文本
# 我们使用 cmd 来调用 echo,因为 echo 是 cmd 的内置命令
cmd1 = ['cmd', '/c', 'echo Hello, World! This is a test.']
# 第二阶段:使用 findstr 查找特定单词
cmd2 = ['findstr', 'World']  # findstr 在 Windows 上用它来查找文本
# 运行第一个命令
result1 = subprocess.run(cmd1, stdout=subprocess.PIPE, text=True)
# 将第一个命令的输出作为输入传递给第二个命令
result2 = subprocess.run(cmd2, input=result1.stdout, capture_output=True, text=True)
# 打印第二个命令的输出
print("Filtered output:", result2.stdout)

​ 在这个实例中,使用了 Windows 平台下的 cmdfindstr 命令,演示了如何通过管道将一个命令的输出传递给另一个命令。这种方式在 Windows 平台上非常实用,可以有效地实现数据流处理和命令的组合使用。

​ 第三个实例通过调用系统命令、执行其他 Python 脚本、捕获和处理外部命令的输出、统一的错误处理机制、平台独立性以及管道和数据流的使用,充分展示了 Python 作为胶水语言的强大能力。它能够将不同的工具和组件无缝地集成到一个统一的工作流程中,提高开发效率和代码的可维护性。

小结

​ 从调用底层的高效 C/C++ 代码,到无缝集成数据库操作及 web 服务,再到进行复杂的系统级别命令管理和数据流处理,Python 出色地充当了“胶水”的角色,把各自独立的发展语言、工具和技术整合到一个统一的环境中。

  1. 与多种语言和技术的无缝整合: 不管是与 C/C++ 库交互,还是与数据库或 Web 服务的整合,Python 都能够轻松完成。

    丰富的库和框架支持SQLAlchemyFlaskctypessubprocess 等强大的三方库和框架让 Python 的集成功能变得平易近人。

  2. 简洁优雅的语法: 简单而清晰的语法使开发者能够迅速编写和调试代码,提高开发效率。

  3. 跨平台: Python 脚本在 Windows、macOS 和 Linux 环境下都能无缝运行,使其成为跨平台开发的理想选择。

​ 因此,Python 作为“胶水语言”不仅是在技术上的能力,更在于它通过简洁优雅的编程方式,将不同的技术轻松连接在一起,使开发者得以在复杂的技术栈中游刃有余。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/28159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C学习自学笔记-会陆续完善对应章节编程经典例子

C学习笔记 0>C语言概述 为什么学习C语言 1&#xff09;C的起源和发展------了解即可 B语言、C语言、C语言的产生地&#xff1a;都出自 美国贝尔实验室 2&#xff09;C的特点 优点&#xff1a;代码量小、速度快、功能强大 缺点&#xff1a;危险性高、开发周期长、可移植性…

MATLAB直方图中bin中心与bin边界之间的转换

要将 bin 中心转换为 bin 边界&#xff0c;请计算 centers 中各连续值之间的中点。 d diff(centers)/2; edges [centers(1)-d(1), centers(1:end-1)d, centers(end)d(end)];要将 bin 边界转换为bin 中心 bincenters binedges(1:end-1)diff(binedges)/2;

每日一练——用队列实现栈

225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; Queue.h #pragma once #include<stdlib.h> #include<assert.h> #include<stdbool.h>typedef int QDataType;typedef struct QNode {QDataType data;struct QNode* next; } QNode;typedef struct …

【办公类-04-03】华为助手导出照片视频分类(根据图片、视频的文件名日期分类导出)

背景需求&#xff1a; 用华为手机助手导出的照片视频&#xff0c;只能将jpg照片&#xff08;exifread读取图片的exif拍摄日期&#xff0c;Png、JPEG、mp4都无法识别到exif信息&#xff09; 【办公类-04-02】华为助手导出照片&#xff08;jpg&#xff09;读取拍摄时间分类导出…

LeetCode | 709.转换成小写字母

这道题可以用api也可以自己实现&#xff0c;都不难&#xff0c;大小字母之前相差了32&#xff0c;检查到大写字母时加上32即可 class Solution(object):def toLowerCase(self, s):""":type s: str:rtype: str"""return s.lower()class Solution…

试论地产需求政策的有效性边界

分析师通过对传统框架因子的分析和美日地产的回顾&#xff0c;指出收入政策将成为核心&#xff0c;测算认为地方收储面积约0.5-1.1亿平、收储资金0.8-1.9万亿元&#xff0c;70城二手房价降幅收窄至[-4.5%&#xff0c;-1.6%]。 事件&#xff1a;2024年5月17日&#xff0c;央行印…

git 快速将当前目录添加仓储

一、进入目录 git init git add . git commit -m "init" git remote add origin http://192.168.31.104/root/AutoBuildDemo.git 二、登录gitlab&#xff0c;创建项目AutoBuildDemo 最后执行&#xff1a; git push -u origin master

Github 2024-06-12 C开源项目日报 Top10

根据Github Trendings的统计,今日(2024-06-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量C项目10PHP项目1PLpgSQL项目1C++项目1Ventoy: 100%开源的可启动USB解决方案 创建周期:1534 天开发语言:C协议类型:GNU General Public Licen…

2024年7款硬盘恢复软件:即刻恢复硬盘删除的文件!

当文件被删除后&#xff0c;它并不是立即从硬盘中消失&#xff0c;而是被标记为“已删除”&#xff0c;等待垃圾回收处理。因此&#xff0c;在文件被删除后&#xff0c;有几种方法可以尝试恢复删除的数据。 以下是7款常用的数据恢复软件&#xff0c;以及它们的详细介绍&#xf…

单片机与DHT11温湿度检测设计

本次设计是采用STC89C54单片机加上低成本的温湿度模块DHT11构成的温湿度检测系统。设计主要由硬件与软件两部分设计构成。硬件方面包括单片机STC89C54、温湿度模块DHT11、显示模块LCD1602、电池电源、I2C存储器以及控制按键等5个部分。此系统完全基于单片机最小系统并进行一定的…

【C++ | 静态成员】类的 静态(static)数据成员、静态(static)成员函数 详解及例子代码

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a;2024-06-16 0…

Electron+vite+vuetify项目搭建

最近想用Electron来进行跨平台的桌面应用开发。同时想用vuetify作为组件&#xff0c;于是想搭建一个这样的开发环境。其中踩了不少坑&#xff0c;总是会出现各种的编译错误和问题&#xff0c;依赖的各种问题&#xff0c;搞了好久最终环境终于弄好可正常开发了。这里分享下快速搭…

践行国产化替代,优刻得私有云勇当先锋

编辑&#xff1a;阿冒 设计&#xff1a;沐由 阳泉&#xff0c;十万火急&#xff01; 位于太行山西麓的山西省阳泉市&#xff0c;是一座历史悠久、底蕴深厚、资源丰富的名城&#xff0c;拥有超百万常住人口&#xff0c;国内生产总值在2022年成功跨越千亿元大关。然而&#xff0c…

RocketMQ源码学习笔记:源码启动NameServer,Broker

这是本人学习的总结&#xff0c;主要学习资料如下 马士兵教育rocketMq官方文档 目录 1、Overview2、NameServer2.1、源码启动NameServer 3、Broker启动过程 1、Overview 这篇文章的源码的版本是release-4.9.8。在启动各个模块之前应该先对项目进行打包mvn install -Dmaven.te…

OS复习笔记ch9-1

单处理器调度 调度类型 主要类型 长程调度&#xff1a;决定将哪个进程放入进程池中 中程调度&#xff1a;决定将哪些进程部分或者全部放入内存中 短程调度&#xff1a;决定哪个空闲进程上处理机 I/O调度&#xff1a;决定哪个进程的I/O请求被可用的I/O设备处理 处理器调度和进…

jupyter notebook中使用不同的anaconda环境及常用conda命令

conda命令 在jupyter notebook中使用不同的anaconda环境其他常用conda命令 在jupyter notebook中使用不同的anaconda环境 创建环境 myenvname 需替换为自己的环境名称 conda create --name myenvname python3.7激活环境 conda activate myenvname 在该环境中安装Jupyter N…

springboot原理篇-springboot

springboot原理篇-springboot&#xff08;三&#xff09; 一、起步依赖 虽然我是直接学习springboot的&#xff0c;没有经历过使用spring开发&#xff0c;但是鉴于我还学习了c,对依赖这方面真的一言难尽&#xff01;springboot起步依赖解决依赖问题我实在是羡慕&#xff01; 直…

第 18章 安全架构设计理论与实践

安全架构是架构面向安全性方向上的一种细分&#xff0c;可关注三个安全方面&#xff0c;即产品安全架构、安全技术体系架构和审计架构&#xff0c;这三个方面可组成三道安全防线。本章主要分析安全威胁、介绍安全模型&#xff0c;在此基础上&#xff0c;就系统、信息、网络和数…

从0开始理解DevOps

目录 一、DevOps背景 二、DevOps介绍 DevOps 组成 三、Jenkins Jenkins 工作流程 四、云原生与DevOps 相信你一定听过 DevOps 这个词&#xff0c;那它到底是什么呢&#xff1f;为什么越来越多的互联网企业都在追随使用它&#xff1f;它与云原生有什么关系&#xff1f;本文将…

VRChat 2024年裁员原因与背景深度分析

VRChat&#xff0c;作为2022年元宇宙/VR社交领域的巨头&#xff0c;近期在2024年宣布裁员计划&#xff0c;其背后原因和背景值得业界尤其是仍在纯元宇宙虚拟空间创业的同仁们重点关注。 一、创始人决策失误 根据CEO的邮件披露&#xff0c;VRChat的创始人因缺乏经验和过度自信…