【NoSQL数据库】Redis Cluster集群(含redis集群扩容脚本)

Redis Cluster集群

    • Redis Cluster
      • Redis 分布式扩展之 Redis Cluster 方案
        • 功能
        • 数据如何进行存储
      • redis 集群架构
      • 集群伸缩
      • 向集群中添加一个新的master节点,并向其中存储 num=10 .
      • 脚本对redis集群扩容缩容,脚本参数为redis集群,固定从6001移动2000个哈希槽到新实例上
      • 故障转移
      • 集群总线
    • Redis性能管理
      • 查看Redis内存使用
      • 内存碎片率
      • 内存使用率
      • 内存回收key

Redis Cluster

Redis 分布式扩展之 Redis Cluster 方案

主从切换的过程中会丢失数据,因为只有一个 master,只能单点写,没有解决水平扩容的问题。而且每个节点都保存了所有数据,一个是内存的占用率较高,另外就是如果进行数据恢复时,非常慢。而且数据量过大对数据 IO 操作的性能也会有影响。

所以我们同样也有对 Redis 数据分片的需求,所谓分片就是把一份大数据拆分成多份小数据,在 3.0 之前,我们只能通过构建多个 redis 主从节点集群,把不同业务数据拆分到不冉的集群中,这种方式在业务层需要有大量的代码来完成数据分片、路由等工作,导致维护成本高、增加、移除节点比较繁琐。

Redis3.0 之后引入了 Redis Cluster 集群方案,它用来解决分布式扩展的需求,同时也实现了高可用机制。

功能
  1. 读和写可以负载均衡
  2. 自动故障转移
  3. 突破了单机存储限制,方便扩展
数据如何进行存储
  • 槽(slot)
    使用hash算法,16384(2^14)个hash槽,每个hash槽有512字节

redis 集群架构

  • redis的集群模式中可以实现多个节点同时提供写操作,redis集群模式采用无中心结构,节点之间互相连接从而知道整个集群状态。
  • redis 集群采用了多主多从,按照一定的规则进行分片,每个节点都保存数据,将数据分别存储,一定程度上解决了哨兵模式下单机存储有限的问题。
  • 下面我这里采用的是三主三从的架构模式,由于硬件问题,主从都配置到了同一台服务器上,启动6个redis实例。

开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
vim redis.conf
#bind 127.0.0.1 #69行,注释掉bind 项,默认监听所有网卡
protected-mode no #88行,修改,关闭保护模式
port 6379 #92行,修改,redis监听端口,
daemonize yes #136行,开启守护进程,以独立进程启动
cluster-enabled yes #832行,取消注释,开启群集功能
cluster-config-file nodes-6379.conf #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000 #846行,取消注释群集超时时间设置
appendonly yes #699行,修改,开启AOF持久化cd /usr/local/redis/bin
mkdir -p redis-cluster/redis600{1..6}
for i in {1..6}
do
cp -i redis.conf redis-cluster/redis600$i
cp -i redis-cli redis-server redis-cluster/redis600$i
sed -i "s/6379/600$i/" redis-cluster/redis600$i/redis.conf
done

启动redis节点

for d in {1..6}
do
cd /usr/local/redis/bin/redis-cluster/redis600$d
redis-server redis.conf
done
ps -ef | grep redis

在这里插入图片描述

启动集群

redis-cli \ 
#-a redis123 起名
--cluster create \
127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 \ #随机分组--cluster-replicas 1#IP1:6001 IP1:6004 IP2:6002 IP2:6005 IP3:6003 IP3:6006 

六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes才可以创建。
–replicas 1 表示每个主节点有1个从节点。

测试群集

redis-cli -p 6001 -c #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots #查看节点的哈希槽编号范围

在这里插入图片描述

set name zhangli

在这里插入图片描述

cluster keyslot name #查看name键的槽编号

在这里插入图片描述


127.0.0.1:6002> quitredis-cli -p 6005 -c
127.0.0.1:6005> keys * #对应的slave节点也有这条数据,但是别的节点没有

在这里插入图片描述

集群伸缩

作为分片集群,其中有一个很重要的功能,就是支持集群伸缩。比如平时非活动期间访问量不会很大,使用三主三从就可以,618、双十一期间,大促活动时候,这种访问量很高的,这个时候,就需要我们对Redis集群进行扩容了,当活动过后,流量下来会,我们又要进行缩容。那么分片集群怎么做到集群伸缩的。
cluster meet
CLUSTER MEET 是 Redis Cluster 内置的命令,可以直接在任何一个节点上执行。它需要指定要加入集群的新节点的 IP 地址和端口号。

【注意】若 cluster meet 加入已存在于其它集群的节点,会致使集群合并,造成数据错乱!建议使用redis-cli add-node

#Redis Cluster是Redis的集群模式,它通过分片和复制来提供高可用性和可扩展性。
#下面是一些常用的Redis Cluster命令:
CLUSTER MEET <ip> <port>:将当前节点与指定的节点进行集群连接。
CLUSTER ADDSLOTS <slot> [<slot> ...]:将指定的槽位分配给当前节点。
CLUSTER DELSLOTS <slot> [<slot> ...]:从当前节点中移除指定的槽位。
CLUSTER REPLICATE <node_id>:将当前节点设置为指定节点的从节点。
CLUSTER INFO:查看集群的整体信息,包括节点数量、槽位分布、复制信息等。
CLUSTER NODES:列出所有的集群节点及其状态、角色、地址等详细信息。
CLUSTER SLOTS:显示集群中的槽位信息,以及这些槽位所属的主节点和从节点。
CLUSTER KEYSLOT <key>:根据键名计算该键所属的槽位。
CLUSTER COUNTKEYSINSLOT <slot>:统计指定槽位中的键数量。
CLUSTER FORGET <node_id>:从集群中移除指定的节点。
CLUSTER FLUSHSLOTS:清空当前节点的所有槽位信息。
CLUSTER REPLICATE <node_id>:将当前节点设置为指定节点的从节点。
CLUSTER SAVECONFIG:将集群的配置保存到硬盘上的redis.conf文件中。

redis-cli --cluster 和 cluster meet区别

  • 当您希望将一个新节点添加到已经运行的 Redis 集群时,可以使用CLUSTER MEET 命令来告诉现 有集群关于这个新节点。
  • 而对于初始化一个全新的 Redis集群,首先需要选择其中一个作为种子(seed)或引导 (bootstrap)节点,并使用 --cluster add-node 选项来添加其他所有主从节点。

提供了很多操作集群的命令,我们可以通过help方式查看:

redis-cli --cluster help

在这里插入图片描述
比如,添加节点命令:
在这里插入图片描述

向集群中添加一个新的master节点,并向其中存储 num=10 .

步骤:
①:启动一个新的Redis实例,地址为192.168.99.121:6010;
②:添加192.168.99.121:6010到之前的集群中,并作为一个master节点;
③:给192.168.99.121:6010节点分片插槽,是的num这个key可以存放到192.168.99.121:6010实例中。
对需求进行分析,我们可以知道,这里其实需要两个新的功能:
①:添加一个节点到集群中;
②:将部分插槽分配到新的master节点上

127.0.0.1:6001> set num 100

创建新的Redis实例
redis6010
在这里插入图片描述
添加新的节点到redis集群中

redis-cli --cluster add-node 192.168.99.121:6010 192.168.99.121:6001

通过命令查看集群状态。命令:

redis-cli -h 192.168.99.121 -p 6001 cluster nodes

在这里插入图片描述
从上图中,我们可以看到,新加入的6001节点,是以master身份加入到了集群中,但是,没有插槽。如果没有插槽的话,也就意味着没有任何数据可以存储到6010上。
那么接下来,我们就来进行插槽的转移。

转移插槽
我们要将key为num的数据存储在6001,这个新插入节点上,因此,需要先看看key==num对应的插槽是多少。可以执行CLUSTER KEYSLOT
命令:

CLUSTER KEYSLOT num

在这里插入图片描述
那么我们可以将0~3000的插槽从1节点转移到10这个新节点上。

redis-cli --cluster reshard 192.168.99.121:6010

依次输入

#插槽数量
3000
#6010的node id
6197a5aef5c55e64642038e4a775e2bace805c9a
#6001的node id
c2b634f80935ab4803e4d887b6b82209d2cbb359
done
yes

在这里插入图片描述

在这里插入图片描述
验证是否转移插槽成功

127.0.0.1:6001> get num
-> Redirected to slot [2765] located at 192.168.99.121:6010
"100"

脚本对redis集群扩容缩容,脚本参数为redis集群,固定从6001移动2000个哈希槽到新实例上

#!/bin/bash
# 定义槽的数量,用于Redis集群重新分配槽
SlotsNumber=2000
# 定义接收迁移槽的节点IP和端口
ReceiveIP=192.168.99.121
ReceivePort=6010
# 定义源节点IP和端口,即迁移槽来源的节点
SourceIP=192.168.99.121
SoursePort=6001
# 通过Redis命令行工具获取接收节点和源节点的ID,用于后续的槽迁移操作
ReceiveNodeID=$(redis-cli -h $SourceIP -p $SoursePort cluster nodes | grep $ReceiveIP:$ReceivePort | awk '{print $1}')
SourseNodeID=$(redis-cli -h $SourceIP -p $SoursePort cluster nodes | grep $SourceIP:$SoursePort | awk '{print $1}')
# 创建一个Expect脚本,用于自动交互式地执行Redis集群槽迁移命令
cat >RedisClusterReshard.exp <<EOF
#!/bin/expect
spawn redis-cli --cluster reshard $ReceiveIP:$ReceivePort
# 自动回答迁移的槽数量
expect "How many slots do you want to move (from 1 to 16384)?"
send "$SlotsNumber\r"
# 自动提供接收节点ID
expect "What is the receiving node ID?"
send "$ReceiveNodeID\r"
# 自动提供源节点ID
expect "Source node #1:"
send "$SourseNodeID\r"
# 因为只有一个源节点,所以此处人为输入"done"结束源节点输入
expect "Sourse node #2:"
send "done\r"
# 确认迁移操作
expect "*(yes/no)?"
send "yes\r"
interact
EOF
# 设置Expect脚本的执行权限
chmod 755 RedisClusterReshard.exp
# 执行Expect脚本,开始槽迁移操作
./RedisClusterReshard.exp

故障转移

自动故障转移

当集群中有一个master宕机会发生什么

  1. 首先该实例与其他实例失去连接
  2. 疑似宕机
  3. 确定下线,自动提升一个slave为新的master

手动故障转移
数据迁移
在新的slave节点利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移.

手动的failover支持三种不同模式:

  1. 缺省:默认的流程
  2. force:省略了对offset的一致性校验
  3. takeover:直接执行第5步,忽略数据一致性、忽略master状态和其他master的意见

集群总线

Redis集群中的每个节点都需要打开两个TCP连接。一个连接用于正常的给Client提供服务,比如 6379,那么对应的还有一个额外的端口就是16379作为数据端口。
这个作为数据端口是在6379端口端号上加10000。

例如:redis的端口为 6379,那么另外一个需要开通的端口是:6379 + 10000, 即需要开启 16379。

16379 端口用于集群总线,这是一个用二进制协议的点对点通信信道。这个集群总线(Cluster bus)用于节点的失败侦测、配置更新、故障转移授权,等等。

解决问题:
开放16379等端口即可:

sudo firewall-cmd --add-port=16370-16379/tcp --permanent
firewall-cmd --reload
firewall-cmd --list-all

Redis性能管理

查看Redis内存使用

info memory

内存碎片率

操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。
内存值 used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。

除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销, 内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。

举例来说:Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生。

#跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

  • 内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
  • 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。
  • 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。

内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

#避免内存交换发生的方法:

  • 针对缓存数据大小选择安装 Redis 实例
  • 尽可能的使用Hash数据结构存储
  • 设置key的过期时间

内存回收key

内存清理策略,保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:

vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机
移除)
allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
noenviction:禁止淘汰数据(不删除直到写满时报错)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/28053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

了解统计学中不同类型的分布

目录 一、说明 二、均匀分布&#xff1a; 三、机器学习和数据科学中的均匀分布示例&#xff1a; 3.1 对数正态分布&#xff1a; 3.2 机器学习和数据科学中的对数正态分布示例&#xff1a; 四、 帕累托分布 4.1 什么是幂律&#xff1f; 4.2 机器学习和数据科学中的帕累托分布示例…

如何清除anaconda3缓存?

如果长期使用anaconda不清理缓存&#xff0c;会导致anaconda占用磁盘空间越来越多&#xff0c;甚至系统磁盘撑爆。 清除包缓存&#xff1a; 打开 Anaconda Prompt 或者命令行窗口。运行以下命令清除包缓存&#xff1a;conda clean --all这会清除所有的包缓存&#xff0c;释放磁…

docker下载ridis

1、执行 docker pull redis:4.0.1 命令&#xff0c;下载 redis 镜像 &#xff08;需确保装有并启动bocker&#xff09; 通过docker启动redis 分配端口和端口映射 密码等 rootiZf8z985hmyc9bkejcfmqrZ:~# docker run --rm -d --name redis6379 -p 6379:6379 redis:4.0.1 --req…

1.个人博客系统项目

一、项目介绍 个人博客系统 相关技术&#xff1a; SpringBootSpringMvcMybatisMysqlRedis项目简介&#xff1a;本项目为一个功能完善的个人博客系统&#xff0c;支持文章的编辑、修改、删除和发布&#xff0c;以及作者个人信息的展示等功能。项目描述&#xff1a; 采用前后端…

利用钉钉机器人和PHP开发一款免费的网站可用性检测工具,单节点版

前言 手里有几套系统正在运维&#xff0c;需要保障正常运行&#xff0c;所以可用性检测就必不可少啦&#xff0c; 以前本来是用的阿里官方的云监控&#xff0c;但现在价格感觉太贵了&#xff0c;不划算 那就自己手搓一个简易版的监控吧。 成品效果展示 代码展示 <?php …

微信小程序毕业设计-实验室管理系统项目开发实战(附源码+论文)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;微信小程序毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计…

centos环境上:k8s 简单安装教程

本次演示安装3节点k8s环境&#xff0c;无需多言&#xff0c;直接上操作步骤&#xff1a; 1、环境准备 k8s部署前&#xff0c;首先需要准备好环境&#xff0c;除了1.4 步骤&#xff0c;其他步骤在所有&#xff08;3个&#xff09;节点上都要执行&#xff1a; 1.1 关闭防火墙 s…

【工具】新手如何正确使用Pycharm?

1. 什么是JetBrains Toolbox JetBrains Toolbox是一个管理工具&#xff0c;用于安装、更新和管理JetBrains开发工具的所有版本。它可以简化多个IDE的管理&#xff0c;并确保你总是使用最新版本的软件。 2. 安装JetBrains Toolbox 步骤1&#xff1a;下载Toolbox 访问JetBrai…

非关系型数据库NoSQL数据层解决方案 之 redis springboot整合与读写操作 2024详解以及window版redis5.0.14下载百度网盘

redis下载安装以及基本使用 下载地址 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;0410 一个名对应一个数值 内存级 在内存里进行操作 准备启动 我们现在就有一个redis客户端的服务器了 我们再启动一个cmd 操作redis数据库 redis里面的基本数据类型有五种 …

HTML5的未来:掌握最新技术,打造炫酷网页体验

引言 随着互联网技术的飞速发展&#xff0c;HTML5已经成为构建现代网页和应用的核心技术之一。HTML5不仅提供了丰富的语义化标签&#xff0c;还引入了多项前沿技术&#xff0c;使得网页体验更加丰富多彩。本文将探讨HTML5的最新技术&#xff0c;并结合行业实践&#xff0c;提供…

Linux操作系统学习:day02

内容来自&#xff1a;Linux介绍 视频推荐&#xff1a;[Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试]( 目录 day025、Linux目录结构6、相对路径7、绝对路径8、命令提示行9、命令解析器10、命令行快捷键11、cd 命令—目录切换12、ls 命令13、文件…

Agilent 安捷伦 N9342C 手持式频谱分析仪

Agilent 安捷伦 N9342C 手持式频谱分析仪 N9342C 手持式7GHz频谱分析仪专为现场测试而设计&#xff0c;无论是安装和维护射频系统&#xff0c;现场进行故障诊断&#xff0c;监测射频环境还是分析干扰&#xff0c;都可以为您提供快速、精确的测量。它具有同类最佳的显示平均噪声…

Vscode中使用make命令

前言 需要注意&#xff0c;如下操作需要进行网络代理&#xff0c;否则会出现安装失败的情况 安装 第一步 — 安装MingGW &#xff08;1&#xff09;进入官网下载 &#xff08;2&#xff09;下载完成之后&#xff0c;双击exe文件 &#xff08;3&#xff09;点击Install &#x…

iOS18新增通话录音和应用锁!附升级教程及内置壁纸

一觉睡醒&#xff0c;iOS18终于是揭开面纱了&#xff0c;而且已经有测试版给开发者使用了。 不过还是建议咱们普通用户不要轻易尝试&#xff0c;而且在升级之前一定要用iMazing做个备份&#xff0c;以免测试系统出现问题&#xff0c;丢失数据。 这次WWDC2024与之前爆料完全一样…

【云岚到家】-day04-2-索引同步-搜索接口

【云岚到家】-day04-2-索引同步-搜索接口 1 索引同步1.1 编写同步程序1.1.1 创建索引结构1.1.2 编写同步程序1.1.2.1 添加依赖1.1.2.2 配置连接ES1.1.2.3 编写同步程序 1.1.3 测试1.1.4 小结1.1.4.1 如何保证CanalMQ同步消息的顺序性&#xff1f;1.1.4.2 如何保证只有一个消费者…

java课设

项目简介:射击生存类小游戏 项目采用技术: 游戏引擎: Unity编程语言: Java图形处理: NVIDIA PhysX (物理引擎), HDRP (High Definition Render Pipeline)音效与音乐: FMOD, Wwise版本控制: Git 功能需求分析: 角色控制&#xff1a;玩家能够使用键盘和鼠标控制角色移动、瞄准…

基于RandLA-Net深度学习模型的激光点云语义分割

一、场景要素语义分割部分的文献阅读笔记 RandLA-Net是一种高效、轻量级的神经网络&#xff0c;其可直接逐点推理大规模点云的语义标签。RandLA-Net基于随机点采样获得了显著的计算和内存效率&#xff0c;并采用新的局部特征聚合模块有效地保留了几何细节&#xff0c;弥补了随机…

最新下载:Folx【软件附加安装教程】

​Folx Pro是一款适合Mac的专业下载工具也是一款BT下载器&#xff0c;Folx中文版有一个支持Retina显示的现代界面&#xff0c;提供独特的系统排序、存储下载内容与预览下载文件&#xff0c;Folx中文官网提供Folx教程、激活码、下载。 Folx友好兼容浏览器&#xff1a;如果你在网…

浅谈网络通信(3)

文章目录 一、TCP[!]1.1、TCP协议报文格式1.2、TCP十大机制1.2.1、确认应答机制1.2.2、超时重传机制1.2.3、连接管理机制1.2.3.1、三次握手[其流程至关重要&#xff0c;面试必考]1.2.3.2.1、那为啥要建立连接&#xff1f;&#xff1f;建立连接的意义是啥&#xff1f;&#xff1…