开源医疗大模型Llama3-Aloe-8B-Alpha,性能超越 MedAlpaca 和 PMC-LLaMA

前言

近年来,大型语言模型 (LLM) 在医疗领域展现出巨大潜力,能够帮助医生和研究人员更快地获取信息、分析数据,并提高医疗服务效率。然而,目前市场上大多数医疗 LLM 都是闭源模型,限制了其在学术研究和应用领域的推广。为了打破这一现状,促进医疗 AI 的发展,越来越多的研究团队开始致力于开发开源的医疗 LLM。

技术特点

Llama3-Aloe-8B-Alpha 是由巴塞罗那超级计算中心 (BSC) 和巴塞罗那理工大学 (UPC) 联合开发的开源医疗大模型,其基于 Meta 的 Llama 3 模型进行微调,并采用了多种技术手段来提升模型的性能和可靠性。

  • Huggingface模型下载:https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha

  • AI快站模型免费加速下载:https://aifasthub.com/models/HPAI-BSC

  • 基于 Llama 3 模型,拥有强大语言基础

Llama3-Aloe-8B-Alpha 以 Meta 的 Llama 3 模型为基础,继承了 Llama 3 模型在语言理解和生成方面的优势。Llama 3 模型经过了海量数据的训练,能够理解和生成各种形式的文本内容,为医疗领域提供了强大的语言处理能力。值得注意的是,Llama 3 8B 模型本身已经展现出了令人瞩目的性能,在各种语言、推理、编码和数学基准测试中,都超越了同等大小甚至更大的模型性能。

  • 合成数据增强,提升模型的专业性

为了提升模型在医疗领域的专业性,研究团队采用了合成数据增强技术。他们利用 Mixtral-8x7B 模型,根据医学问答数据集的训练集生成大量的 CoT (Chain of Thought) 答案,并将其加入到模型的训练数据中。CoT 的核心思想是引导模型通过逐步推理来解决问题,例如,在处理多选题时,模型会先概括问题,然后分析每个选项,最后通过推理步骤得出最终答案。这种策略可以帮助模型更深入地理解医学问题,并生成更合理的答案。

  • 模型合并和对齐,提升模型的鲁棒性和安全性

研究团队将多个经过指令微调的 Llama 3 模型进行合并,并通过直接偏好优化 (DPO) 对模型进行了对齐训练,以提升模型的鲁棒性和安全性。模型合并的目的是结合不同模型的优势,提高模型的泛化能力。DPO 训练则通过收集人类对模型生成结果的偏好数据,对模型进行微调,使其更符合人类的价值观和道德规范。

性能表现

Llama3-Aloe-8B-Alpha 在多个医疗领域基准测试中展现出优异的性能,其性能超越了 MedAlpaca 和 PMC-LLaMA 等其他开源医疗大模型。

  • 医疗领域基准测试表现出色

Llama3-Aloe-8B-Alpha 在 MedMCQA、MedQA 和 PubMedQA 等医疗领域基准测试中,展现出了领先的性能。

  • MedMCQA: 该数据集包含来自印度医学院入学考试的 4,183 个 4 选项选择题。

  • MedQA: 该数据集包含 1,273 个美国医疗执照考试 (USMLE) 问题,每个问题有 4 或 5 个选项。

  • PubMedQA: 该数据集包含 1,000 个专业标注的 PubMed 文献问答样本。

在这些测试中,Llama3-Aloe-8B-Alpha 表现出色,例如,在 PubMedQA 测试中,其表现超过了 Meditron 70B 模型,说明了其在医学信息检索和理解方面的优势。

  • 对齐训练提升模型安全性

Llama3-Aloe-8B-Alpha 通过直接偏好优化 (DPO) 对模型进行安全对齐,能够在回答问题时更加安全可靠,降低了模型产生有害或不道德内容的风险。研究团队通过收集人类对模型生成结果的偏好数据,对模型进行了微调,使其更符合人类的价值观和道德规范。

应用场景

Llama3-Aloe-8B-Alpha 可以应用于多个医疗领域的场景,例如:

  • 医学信息检索: 帮助医生快速查找和理解相关文献,提高诊断和治疗效率。

  • 医学问答: 回答医生的专业问题,帮助他们更好地理解疾病、药物和治疗方案。

  • 医学文本摘要: 将大量的医学文献和报告进行摘要,方便医生快速了解关键信息。

  • 医学数据分析: 协助研究人员分析医学数据,寻找疾病的病因和治疗方法。

总结

Llama3-Aloe-8B-Alpha 的开源发布,为医疗 AI 研究和应用领域提供了强大的工具,它不仅展现出了优异的性能,还通过对齐训练提高了模型的安全性,并通过合成数据增强提升了模型的专业性。随着技术的不断发展,相信 Llama3-Aloe-8B-Alpha 会在更多医疗场景发挥重要作用,为人类健康事业贡献力量。

模型下载

Huggingface模型下载

https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha

AI快站模型免费加速下载

https://aifasthub.com/models/HPAI-BSC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/27630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web前端开发主题:深入探索、挑战与创新的四个维度

Web前端开发主题:深入探索、挑战与创新的四个维度 在数字化的浪潮中,Web前端开发早已成为连接技术与用户体验的关键桥梁。它不仅涉及技术实现,更承载着设计美学、交互逻辑以及业务需求的融合。本文将深入探讨Web前端开发的四个维度&#xff…

移动端消息中心,你未必会设计,发一些示例出来看看。

APP消息中心是一个用于管理和展示用户收到的各种消息和通知的功能模块。它在APP中的作用是提供一个集中管理和查看消息的界面,让用户能够方便地查看和处理各种消息。 以下是设计APP消息中心的一些建议: 1. 消息分类: 将消息按照不同的类型进…

LLM文章整理

大模型 方向开源项目相关热点主观解读模型训练Bloom、ChatGLM、LLaMA、Dolly20门槛克隆ChatGPT!30分钟训完,60亿参数性能堪比GPT-3.5、Llama-X开源!唿吁每一位NLPer参与推动LLaMA成为最先进的LLM、Vicuna: An Open-Source Chatbot Impressin…

代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯

动态规划理论基础 代码随想录 (programmercarl.com) 动态规划(Dynamic Programming,简称DP)是一种算法设计技术,它通过将复杂问题分解为更小的子问题来解决优化问题。动态规划通常用于解决那些具有重叠子问题和最优子结构特性的…

安卓交叉编译——ndk

下载NDK The Native Development Kit (NDK)特指Android NDK,是为了服务安卓开发的。通过ndk,安卓也可以使用java之外的native code,如c,c,甚至c和c对应的library也可以得以复用,这就大大减少了重复开发。 The Native …

【Numpy】一文向您详细介绍 np.floor()

【Numpy】一文向您详细介绍 np.floor() 下滑即可查看博客内容 🌈 欢迎莅临我的个人主页 👈这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇 🎓 博主简介:985高校的普通本硕,…

基于Python+Django+MySQL+HTML的创新创业平台

DjangoMySQLHTML 基于PythonDjangoMySQLHTML的创新创业平台 用户管理 系统监控 角色管理 资源管理 参数设置 角色管理 简介 学生创新创业平台是一个功能丰富的在线教育或协作系统,支持中文语言环境。它提供用户管理、系统监控、多角色权限控制、资源管理、参…

Linux目录的作用和常用指令

目录结构及其详细作用 / (根目录) Linux文件系统的起点,所有文件和目录都在其下。 /bin 存放系统启动和运行时所需的基本命令,如 ls, cp, mv, rm,这些命令在单用户模式下或系统崩溃时仍然可用。 /boot 包含启动引导加载器的文件和Linux内核…

mac下Xcode在iphone真机上测试运行iOS软件

最近一个需求需要在iPhone真机上测试一个视频直播的项目。 需要解决如何将项目 app 安装到真机上 在进行真机调试。 安装Xcode 直接在App Store上搜索Xcode安装即可。 关键是要安装Simulator。项目需要安装iOS17.5但是由于安装包太大,并且网络不稳定的原因。在Xco…

Databricks超10亿美元收购Tabular;Zilliz 推出 Milvus Lite ; 腾讯云支持Redis 7.0

重要更新 1. Databricks超10亿美元收购Tabular,Databricks将增强 Delta Lake 和 Iceberg 社区合作,以实现 Lakehouse 底层格式的开放与兼容([1] [2])。 2. Zilliz 推出 Milvus Lite 轻量级向量数据库,支持本地运行;Milvus Lite 复…

C++入门 vector介绍及使用

目录 vector的介绍及使用 vector常用接口的介绍及使用 vector的定义 vector iterator 的使用 vector 空间增长问题 vector 增删查改 push_back/pop_back insert & erase & find operator[ ]的遍历 vector的介绍及使用 vector的文档介绍 vector是表示可变大…

Vue使用vue-esign实现在线签名

Vue在线签名 一、目的二、样式三、代码1、依赖2、代码2.1 在线签名组件2.2父组件 一、目的 又来了一个问题,直接让我在线签名(还不能存储base64),并且还得上传,我直接***违禁词。 二、样式 初始样式 点击前往组件&am…

C++中如何选择整型类型存储数据?

C中如何选择整型类型存储数据? C提供了大量的整型,应使用哪种类型呢?通常,int被设置为对目标计算机而言最为“自然”的长度。自然长度(natural size)指的是计算机处理起来效率最高的长度。如果没有非常有说服力的理由来选择其他类型&#x…

金蝶云星空程序员开发快速入门

文章目录 一 前言1.1 学习步骤1.2 学习需知 二、学习金蝶*云星空的步骤2.1 下载金蝶*云星空安装到本地2.2 查看官网的学习资料2.3 如何使用C#进行插件开发2.4 sqlserver的表设计以及存储过程2.5 如何使用python进行插件的开发2.6 第三方程序如何调用金蝶*云星空的数据 三 后记 …

1089 狼人杀-简单版

solution 有两个狼人&#xff0c;其中一个狼人说谎&#xff0c;找到符合该条件的方案。若有多种则输出序号最小的方案&#xff0c;若无方案则输出No Solution。 枚举所以狼人的可能性&#xff0c;找到符合的方案输出并结束。 #include<iostream> using namespace std; …

Flyway 数据库迁移工具详解:安装、配置与使用教程

Flyway 数据库迁移工具详解&#xff1a;安装、配置与使用教程 Flyway 是一个开源的数据库迁移工具&#xff0c;用于管理和自动化数据库的版本控制。它可以与各种关系型数据库配合使用&#xff0c;帮助开发团队在应用程序开发生命周期中轻松处理数据库模式的变更。以下是 Flywa…

【CSS】text-decoration-skip是做什么用的,怎么使用

CSS的text-decoration-skip属性用于定义元素哪些部分的内容需要被文本修饰&#xff08;如下划线、上划线、删除线等&#xff09;所跳过。这可以控制所有该元素或该元素的祖先所绘制的文本修饰线。 text-decoration-skip的工作原理&#xff1a; 以text-decoration-skip: ink;为…

CSRF攻击

改账号和密码 里面有改的账号和密码 我改这个代码的123为456&#xff0c;然后在新的浏览器去执行&#xff0c;然后密码就又被改了 假如黑客知道修改密码的url&#xff0c;那么就危险了 但是也不是随便改 是有前提的&#xff0c;前提是&#xff1a; 1、已经登录了要改密码的…

计算机网络:网络层 - IPv6

计算机网络&#xff1a;网络层 - IPv6 IPv6 数据报IPv6 地址冒号十六进制记法地址分类 IPv4 到 IPv6 过渡双栈协议隧道技术 IPv6 是互联网协议的最新版本&#xff0c;它被设计用来取代现有的 IPv4 协议。这是因为 IPv4 存在一些根本性的限制&#xff0c;而 IPv6 则可以解决这些…

【three.js案例一】智慧星球

直接附上源码: import * as THREE from three; import { OrbitControls } from three/addons/controls/OrbitControls.js;//场景 const scene = new THREE.Scene();const geometry = new THREE.SphereGeometry(50,32,16);console.log(.postion,geometry.attributes.position)…