Linux基础IO【II】真的很详细

目录

一.文件描述符

1.重新理解文件

1.推论

2.证明

2.理解文件描述符

1.文件描述符的分配规则

3.如何理解文件操作的本质?

4.输入重定向和输出重定向        

1.原理

2.代码实现重定向

3.dup函数

​编辑 

4.命令行中实现重定向

 二.关于缓冲区

1.现象

2.重新理解缓冲区

3.缓冲区刷新策略问题

4.缓冲区的位置

​编辑

5.如何解释刚刚的现象呢?

总结


今天,我们接着在上一篇文章的基础上,继续学习基础IO。观看本文章之前,建议先看:Linux基础IO【I】,那,我们就开始吧!

一.文件描述符

1.重新理解文件

 文件操作的本质:进程和被打开文件之间的关系。

1.推论

我们先用一段代码和一个现象来引出我们今天要讨论的问题:

上码:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
//我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}

看到输出的结果,各位大佬想到了什么?我想到了数组的下标。也许这和数组有这千丝万缕的关系,但我们都只是猜测,接下来就证明我们的猜测。

首先我们可以利用现在掌握的知识推导出这样一条逻辑链:

  1. 进程可以打开多个文件吗?可以,而且我们刚刚已经证实了。
  2. 所以系统中一定会存在大量的被打开的文件。
  3. 所以操作系统要不要把这些被打开的文件给管理起来?要。
  4. 所以如何管理?先描述,再组织。
  5. 操作系统为了管理这些文件,一定会在内核中创建相应的数据结构来表示文件。
  6. 这个数据结构就是struct_file结构体。里面包含了我们所需的大量的属性。

我们回到刚刚代码的运行结果上来:

为什么从3开始,0,1,2分别表示的是什么? 

其实系统为一个处于运行态的进程默认打开了3个文件(3个标准输入输出流):

  • stdin(标准输入流)  :对应的是键盘。
  • stdout(标准输出流): 对应的是显示器。
  • stderr(标准错误流)   :对应的是显示器。

 上面我们提及的struct_file结构体在内核中的数据如下:

/** Open file table structure*/
struct files_struct {/** read mostly part*/atomic_t count;bool resize_in_progress;wait_queue_head_t resize_wait;struct fdtable __rcu *fdt;struct fdtable fdtab;/** written part on a separate cache line in SMP*/spinlock_t file_lock ____cacheline_aligned_in_smp;unsigned int next_fd;unsigned long close_on_exec_init[1];unsigned long open_fds_init[1];unsigned long full_fds_bits_init[1];struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};
struct file {union {struct llist_node	fu_llist;struct rcu_head 	fu_rcuhead;} f_u;struct path		f_path;struct inode		*f_inode;	/* cached value */const struct file_operations	*f_op;spinlock_t		f_lock;enum rw_hint		f_write_hint;atomic_long_t		f_count;unsigned int 		f_flags;fmode_t			f_mode;struct mutex		f_pos_lock;loff_t			f_pos;struct fown_struct	f_owner;const struct cred	*f_cred;struct file_ra_state	f_ra;u64			f_version;
#ifdef CONFIG_SECURITYvoid			*f_security;
#endif/* needed for tty driver, and maybe others */void			*private_data;#ifdef CONFIG_EPOLLstruct list_head	f_ep_links;struct list_head	f_tfile_llink;
#endif /* #ifdef CONFIG_EPOLL */struct address_space	*f_mapping;errseq_t		f_wb_err;
} 

2.证明

大家有没有好奇过:为什么我们C库函数fopen的返回值类型是FILE*,FILE是什么?当时老师肯定没给我们讲清楚,因为当时我们的知识储备不够。但现在,我们有必要知道FILE其实就是一个结构体类型。

//stdio.h
typedef struct _iobuf
{char*  _ptr;        //文件输入的下一个位置int    _cnt;        //当前缓冲区的相对位置char*  _base;       //文件初始位置int    _flag;       //文件标志int    _file;       //文件有效性int    _charbuf;    //缓冲区是否可读取int    _bufsiz;     //缓冲区字节数char*  _tmpfname;   //临时文件名
} FILE;

这3个标准输入输出流既然是文件,操作系统必定为其在系统中创建一个对应的struct file结构体。 

为了证明我们的判断,我们可以:调用struct file内部的一个变量。

操作系统底层底层是用文件描述符来标识一个文件的。纵所周知,C文件操作函数是对系统接口的封装。所以FILE结构体中一定隐藏着一个字段来储存文件描述符。而且stdin,stdout,stderr都是FILE*类型的变量,

所以:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
// 我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{printf("stdin:%d\n", stdin->_fileno);//调用struct file内部的一个变量printf("stdout:%d\n", stdout->_fileno);printf("stderr:%d\n", stderr->_fileno);umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}

来啦,终于来啦!!终于证明我们的推断。

2.理解文件描述符

进程中打开的文件都有一个唯一的文件描述符,用来标识这个文件,进而对文件进行相关操作。其实,我们之前就接触到了文件描述符,我们简单回忆一下:

  • 调用open函数的返回值,就是一个文件描述符。只不过,我们打开的文件的文件描述符默认是从3开始的,0.1.2是系统自动为进程打开的。
  • 调用close传入的参数。
  • 调用write,read函数的第一个参数。

可见,文件描述符对我们进行文件操作有多么重要。文件描述符就像一个人身份证,在一个进程中具有唯一性。


文件描述符fd的取值范围:文件描述符的取值范围通常是从0到系统定义的最大文件描述符值。

当Linux新建一个进程时,会自动创建3个文件描述符0、1和2,分别对应标准输入、标准输出和错误输出。C库中与文件描述符对应的是文件指针,与文件描述符0、1和2类似,我们可以直接使用文件指针stdin、stdout和stderr。意味着stdin、stdout和stderr是“自动打开”的文件指针。

在Linux系统中,文件描述符0、1和2分别有以下含义:

  • 文件描述符0(STDIN_FILENO):它是标准输入文件描述符,通常与进程的标准输入流(stdin)相关联。它用于接收来自用户或其他进程的输入数据。默认情况下,它通常与终端或控制台的键盘输入相关联。
  • 文件描述符1(STDOUT_FILENO):它是标准输出文件描述符,通常与进程的标准输出流(stdout)相关联。它用于向终端或控制台输出数据,例如程序的正常输出、结果和信息。
  • 文件描述符2(STDERR_FILENO):它是标准错误文件描述符,通常与进程的标准错误流(stderr)相关联。它用于输出错误消息、警告和异常信息到终端或控制台。与标准输出不同,标准错误通常用于输出与程序执行相关的错误和调试信息

这些文件描述符是在进程创建时自动打开的,并且可以在程序运行期间使用。它们是程序与用户、终端和操作系统之间进行输入和输出交互的重要通道。通过合理地使用这些文件描述符,程序可以接收输入、输出结果,并提供错误和调试信息,以实现与用户的交互和数据处理。

1.文件描述符的分配规则

文件描述符的分配规则为:从0开始查找,使用最小的且没有占用的文件描述符。

所以:我们是否可是手动的关闭,系统为我们自动带的3个文件呢?so try!

 先试着关闭一下0号文件描述符对应的标准输入流

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
// 我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{close(0);umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}

结果,我们自己打开的文件就把0号文件描述符给占用了。接着,我们试试关闭之后写入受什么影响。

没关闭之前:

#include<stdio.h>
#include<unistd.h>
#include<string.h>
int main()
{//close(0);char buffer[1024];memset(buffer,0,sizeof(buffer));scanf("%s",buffer);printf("%s\n",buffer);
}

关闭后:

#include<stdio.h>
#include<unistd.h>
#include<string.h>
int main()
{close(0);char buffer[1024];memset(buffer,0,sizeof(buffer));scanf("%s",buffer);printf("%s\n",buffer);
}

我们发现:scanf函数直接无法使用,输入功能无法使用。原因是什么?

这是因为我们将0号文件描述符关闭后,0号文件描述符就不指向标准输入流了。但是当使用输入函数输入时,他们仍然会向0号中输入,但0号已经不指向输入流了,所以就无法完成输入。

大家也可以自行将1号文件描述符和2号文件描述符试着关闭一下,观察一下关闭前后有什么不同之处。

3.如何理解文件操作的本质?

  • 我们说:文件操作的本质是进程和被打开文件之间的关系。对这句话我们应该如何理解呢?
  • 文件描述符为什么就是数组的下标呢?
  • 如何理解键盘,显示器也是文件?

如上图:

进程想要打开位于磁盘上的my.txt文件,文件加载到内存之后,操作系统为了管理该文件,为其创建了一个struct file结构体来保存该文件的属性信息。此时,内存中已经存在系统默认打开的标准输入流,标准输出流,标准错误流对应的struct file结构体。但是,系统中有很多进程,,一定会有大量被打开的文件,进程如何分清个哪文件属于该进程呢?我们知道task_struct结构体保存着关于该进程的所有属性。其中有一个struct file_struct*类型的指针files,指向一个struct file_struct 类型的结构体,该结构体中存在着一个struct file*类型的数组,数组的元素为struct file*类型。正好存放指向我们为每一个文件创建的struct file结构体的指针。所以,根据这个数组,我们就会很顺利的找到每一个文件的struct file结构体。进而找到每一个属于该进程的文件,然后对文件进行相关操作。由于数组的下标具有很好的唯一性,所以系统就向上层返回存放文件的struct file结构体指针的元素下标,供上层函数利用这个下标对文件进行操作。

 通过这段文字,相信大家已经对我们刚刚提出的几个问题已经有了答案!

4.输入重定向和输出重定向        

1.原理

重定向的原理就是:上层调用的fd不变,在内核中更改fd对应的struct file*地址。

如下图:

我们调用了close(1)关闭了输出文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向1号文件描述符中输出。但是1号描述符对应的地址已发生改变,变为myfile,所以本想使用printf往显示器中输入的东西就会输入到myfile文件中。这就是输出重定向。

输入重定向和输出重定向原理是一样的,只不过输入重定向关闭的是输入流,输出重定向关闭的是输出文件流。

 

 我们调用了close(0)关闭了输入文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向0号文件描述符中输出。但是0号描述符对应的地址已发生改变,变为myfile,所以就会输入到myfile文件中。这就是输入重定向。

2.代码实现重定向

说了这么多,是不是该实现一下了:

先来实现一下输出重定向:

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(1);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);printf("wanghan");close(n);
}

什么鬼?失蒜了?,其实,这时候我们输出的内容都在缓冲区内,没被刷新出来,我们需要手动刷新一下缓冲区。把代码修改一下:

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(1);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);printf("wanghan");fflush(stdout);//刷新缓冲区close(n);
}

看,我们想要打印在显示器中的东西,就被我们成功输出到了指定的文件中。

接着,我们尝试一下写输入重定向: 

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(0);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);scanf("%d",stdin);char arr[1024]="conglution you,you are successful";write(0,arr,strlen(arr));close(n);
}

 但是,这搞个重定向这么复杂,是不是有点太low了?所以专门用于重定向的函数就出现了。

3.dup函数

其中,我们最常用的就是dup2。

 

 返回值:

  • 如果成功,返回newfd。
  • 如果失败,返回-1。

原理:将oldfd中的struct file结构体地址拷贝到newfd中。

实例:

输出重定向

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{umask(0); int n=open("wang.txt",O_RDWR|O_CREAT|O_TRUNC);dup2(n,1);//尝试写一下输出重定向。printf("successful");fflush(stdout);close(n);
}

 达到了我们的预期效果。

输入重定向

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{int n=open("wang.txt",O_RDWR);dup2(n,0);//尝试写一下输入重定向。char buffer[64];while(1){printf(">");if(fgets(buffer,sizeof buffer,stdin)==nullptr) break;    printf("%s",buffer);}close(n);return 0;
}

4.命令行中实现重定向

我们在命令行中,通过输入相关指令也可以实现重定向的功能:

'>':输入重定向
'>>':追加重定向
'<<':输出重定向

这些命令底层都是用dup实现的,大家感兴趣的可以尝试写一下代码。 

 二.关于缓冲区

1.现象

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
int main()
{//C接口printf("hello printf\n");fprintf(stdout,(char*)"hello fprintf\n");fputs("hello fputs\n",stdout);//系统接口char *msg="hello write\n";write(1,msg,strlen(msg));fork();return 0;}

我们观察到:把运行结果重定向到文件中时,C语言函数都被打印了2次,唯独操作系统接口被打印了一次。这是为什么?但是我们知道这种现象一定和缓冲区有关。

2.重新理解缓冲区

缓冲区本质就是一段内存!!谁申请的?属于谁?为什么要申请 ?

我们先来一个故事乐呵一下:

张三在广东,他的好朋友李四在北京。他们俩关系嘎嘎好,所以,张三总喜欢把自己用过的东西送给李四,比如包浆的键盘等等。头一开始,张三 都是骑车或者坐火车亲自把东西给李四送过。一来一会都得花小半个月的时间。有一次,舍友对他说:"咱们楼下不是有顺丰嘛,你干嘛不快递给他寄过去呢?"。一语点醒梦中人啊!!从那以后,张三就给李四发快递给他送东西。这样,张三就可以有时间学习和干其他事情了。所以人们都喜欢用快递发送东西,节省时间。

广东就相当于内存,北京就相当于磁盘,张三就相当于一个进程,楼下的顺丰就相当于内存中的缓冲区。内存往磁盘中写东西是非常慢的,就像张三亲自给李四送东西一样。那么缓冲区的意义是什么呢?节省进程进行数据IO的时间

 但是,我们并没有做让数据写入到缓冲区的操作呀?

我们使用的fwrite函数,与其把它当做一个文件写入函数,不如把它当做一个拷贝函数,将数据从缓冲区拷贝到“内存”或“外设”。

3.缓冲区刷新策略问题

 同样的数据量 ,一次性全部写入到磁盘中,和多次少量写入到外设中,哪种效率最高?

毫无疑问,一次性写入磁盘中效率最高,因为数据的读取和写入占用的时间很短,大部分时间都用来等待外设就绪。

缓冲区一定会结合自己的设备,定制自己的刷新策略:

  • 行刷新:即行缓存,对应的设备就是显示器,我们试用的“\n”采用的刷新方式都是行刷新。虽然使用将数据一次刷新到显示器上效率最高,但是人类更习惯于按行读取内容,所以为了给用户更好的体验,使用行刷新更好。
  • 立即刷新:相当于没有缓冲区。
  • 缓冲区满:全刷新,常用于向磁盘文件中写入。效率最高。

有两种情况不符合刷新策略的规定

  • 用户强制刷新,比如fflush(stdout)。
  • 进程退出,一般都要刷新缓冲区。 

4.缓冲区的位置

缓冲区在哪?指的是什么缓冲区? 

首先,我们可以肯定:这个缓冲区一定不在内核中,因为如果缓冲区在内核中,write也会打印两次。 

我们之前谈论的所有的缓冲区,都指的是用户级语言层面给我们提供的缓冲区。

我们之前提到过:stdout,stdin,stderr的类型都是FILE*类型,FILE是一个结构体,该结构体中除了包含一个fd,还有一个缓冲区。所以我们强制刷新缓冲区调用fflush时,都要传入一个FILE*类型的指针;我们在关闭一个进程调用fclose时,也要传入一个FILE*类型的指针。因为FILE结构体内部包含一个缓冲区。

如图:

5.如何解释刚刚的现象呢?

 明白了上面的内容,我们就能够明白刚刚的现象了。

没有进行重定向。stdout默认使用的是行刷新,在进程调用fork()之前,三条C语言函数打印的信息已经显示到了显示器上(外设)。FILE内部的缓冲区不存在对应的数据了。

如果进行了重定向,写入不再是显示器,而是磁盘文件,采用的刷新策略是缓冲区满再刷新。之前的3条打印的信息,虽然带来‘\n’,但是不足以让stdout缓冲区写满。数据并没有被刷新。执行fork时,stdout属于父进程。创建子进程时,紧接着就是进程退出,谁先退出,就要先进行缓冲区刷新(也就是修改数据,发生写时拷贝)。父子进程在退出时都会刷新一次缓冲区,所以就会打印两次。

write为什么没有被打印两次呢?

上面的过程和write无关,因为write没有FILE,而用的是fd,也就无法使用C语言层面的缓冲区。

总结

  • C语言的一些IO接口需要熟练掌握,例如fwrite,fread等等。明白C文件函数和系统接口之间的关系。C函数是底层库函数的封装。
  •  当前当前路径是根据进程的cwd来决定的,C语言默认打开三个流:stdin、stdout、stderr。他们三个 分别占用0、1、2三个文件描述符。
  •  系统层面的IO交互接口有 write、open、close、read等需要理解。
  •  文件=内容+属性;一个文件是否为空都会存在属性,而操作系统为了维护文件的属性,先描述再组织,将文件的属性组织为一个结构体file,而 每个file以双链表的形式相连。
  •  因为Linux下一切皆文件,所以文件也需要被组织起来,于是file结构体的指针file*被组织起来封装在一个叫做files_struct 指针数组内,而数组下标就是 文件描述符。
  •  重定向是 根据更改文件描述符的指向的struct file结构体 做到的,可以使用dup2接口做调整。
  •  缓冲区本质上是一块内存区域,而缓冲区分为系统层缓冲区和语言层缓冲区,在C语言中缓冲区被封装在FILE结构体内,每一个文件都有自己的缓冲区。
  •  缓冲区满了会刷新到内核中,而 刷新的本质就是写入。

写到最后,本文到这里就结束了,谢谢大家观看,如果文中有什么错误,欢迎大家批评指正!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/27111.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web应用安全测试-业务功能滥用(一)

Web应用安全测试-业务功能滥用&#xff08;一&#xff09; 1、短信定向转发 漏洞描述&#xff1a;短信接收人可任意指定 测试方法&#xff1a;拦截发送短信的请求&#xff0c;将手机号改为测试人员的手机号&#xff0c;测试是否可接收短信验证码。 风险分析&#xff1a;攻击…

echarts学习:使用dataset管理数据

前言 在我们公司的组件库中有许多echarts图表相关的组件&#xff0c;这些组件在使用时&#xff0c;只需将图表数据以特定的格式传入组件中&#xff0c;十分方便。因此当我得知echarts 可以使用dataset集中管理数据时&#xff0c;我就决定自己一定要搞懂它&#xff0c;于是在最…

oracle 删除当前用户下所有表

荆轲刺秦王 通常呢 我们将正式环境的 oracle 数据库 导出成 dmp 文件&#xff0c;然后导入到测试环境或者本地环境&#xff0c;期间可能会出现各种问题。那么如何使错误的导入数据全部删除呢。可以这样做&#xff1a; 1. 本地虚拟机启动 oracle 服务 2. sqldeveloper 连接 o…

vue 安装依赖报错

解决方法&#xff1a; npm install --legacy-peer-deps 然后再运行项目即可。

LabVIEW利用旋转编码器脉冲触发数据采集

利用旋转编码器发出的脉冲控制数据采集&#xff0c;可以采用硬件触发方式&#xff0c;以确保每个脉冲都能触发一次数据采集。本文提供了详细的解决方案&#xff0c;包括硬件连接、LabVIEW编程和触发设置&#xff0c;确保数据采集的准确性和实时性。 一、硬件连接 1. 旋转编码…

北斗应急通信手持终端如何在户外使用

北斗应急通信手持终端在户外的使用&#xff0c;需要遵循一定的步骤和注意事项以确保其高效、安全地运作。以下是一个清晰的使用指南&#xff1a; 一、准备阶段 检查电量&#xff1a;确保北斗应急通信手持终端的电量充足&#xff0c;并携带备用电源以应对长时间使用的情况。 熟…

Ubuntu系统设置中文输入法

重新设置超级用户权限(root)密码(非必要) sudo passwd root 需要注意的是Ubuntu的root密码不能少于8个字符 设置成功后输入命令和新的密码即可无需输入sudo启用root命令 su - 更新软件包列表 sudo apt update sudo apt upgrade 安装fcitx5输入法框架 个别情况需要卸载旧的…

红黑树【C++实现】

文章目录 红黑树的概念红黑树的性质红黑树的操作红黑树结点的定义红黑树的插入情况一&#xff1a;插入结点的叔叔存在&#xff0c;且叔叔的颜色是红色情况二: 插入结点的叔叔存在&#xff0c;且叔叔的颜色是黑色情况三: 插入结点的叔叔不存在 红黑树的验证红黑树的查找 红黑树的…

实现直流高电压(100Vdc~1000Vdc)检测的采样电路(隔离方案)

目前&#xff0c;在电力系统自动化领域、新能源电动汽车领域以及高压储能领域&#xff0c;经常需要采样、检测高压直流母线电压&#xff0c;一般直流高压可能达到100Vdc&#xff5e;1000Vdc&#xff0c;结合电路成本和采样精度&#xff0c;我们设计人员就需要选择合适的采样电路…

【elementui源码解析】如何实现自动渲染md文档-第一篇

文章目录 目录 背景 获取源码 代码分析 背景 之前基于vant3的源码开发过二次开发过组件&#xff0c;其中vant实现了将md文档渲染到界面上&#xff0c;有天突发奇想想知道这是如何实现的将md文档渲染到界面上的&#xff0c;因为平时开发中使用elementui占多数&#xff0c;所…

java线程池讲解!核心参数

创建方式 | 构造方法 Executor构造方法 存放线程的容器&#xff1a; private final HashSet<Worker> workers new HashSet<Worker>(); 构造方法&#xff1a; public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit uni…

利用Morph Studio平台免费生成AI视频教程和效果体验

今天体验一下生成AI视频平台&#xff0c;目前是免费的&#xff0c;但生成效果还是不错的,可以根据输入文字&#xff0c;或者上传图片&#xff0c;或者上传视频来自动生成视频。 访问官网&#xff0c;登录之后点击“create Library” &#xff0c;比如我建了一个“AI视频”的Li…

4S店试驾线上预约小程序源码系统 前后端分离 带完整的源代码包+安装部署教程

系统概述 这款 4S 店试驾线上预约小程序源码系统旨在为 4S 店和消费者提供便捷、高效的试驾预约服务。通过小程序&#xff0c;消费者可以轻松预约试驾&#xff0c;4S 店可以方便地管理预约信息&#xff0c;提高工作效率和服务质量。 代码示例 系统特色功能一览 1.便捷的预约流…

面向对象编程重载

系列文章目录 文章目录 系列文章目录前言一、重载&#xff08;overload&#xff09; 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用&#xff0c;看懂了…

floating_point的IP核使用

参考文章&#xff1a;Vivado IP核之定点数转为浮点数Floating-point_vivado 浮点数-CSDN博客 IP核的配置 后边还要做FFT&#xff0c;所以理论上最好的输出方式是单精度浮点。 输入精度&#xff1a;为了满足要求&#xff0c;输出数据的24位&#xff0c;其中 1位符号位&#xff…

2024年【制冷与空调设备运行操作】考试内容及制冷与空调设备运行操作考试报名

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 制冷与空调设备运行操作考试内容考前必练&#xff01;安全生产模拟考试一点通每个月更新制冷与空调设备运行操作考试报名题目及答案&#xff01;多做几遍&#xff0c;其实通过制冷与空调设备运行操作新版试题很简单。…

pytest配置文件配置并通过allure生成报告

之前已经学习了使用pytestrequests实现各种方式的调用和一些脚本的执行&#xff0c;今天来学习下如何使用pytest.ini配置文件来管理用例的执行以及如何使用allure生成测试报告。 1.pytest.ini文件配置 在项目目录下新建pytest.ini文件&#xff0c;然后进行配置&#xff0c;pyt…

从路边摊到五星级酒店:六西格玛培训的价格与品质探秘!

当我们深入探讨市面上的六西格玛培训价格差异时&#xff0c;确实会发现不同机构之间存在着显著的差别。以张驰咨询和xx机构为例&#xff0c;两者在价格定位上形成了鲜明的对比&#xff0c;同时也展示了不同机构在教学理念和服务品质上的不同。 xx机构之所以能以亲民的价格吸引…

JVM常用概念之扁平化堆容器

扁平化堆容器是OpenJDK Valhalla 项目提出的&#xff0c;其主要目标为将值对象扁平化到其堆容器中&#xff0c;同时支持这些容器的所有指定行为&#xff0c;从而达到不影响原有功能的情况下&#xff0c;显著减少内存空间的占用&#xff08;理想条件下可以减少24倍&#xff09;。…

C++ 36 之 this指针

#include <iostream> #include <string.h> using namespace std;// this指针 永远指向当前对象 class Students06{ public:int age;// int m_age; //member成员首字母mStudents06(int age){// 1.解决命名冲突的问题 this指针找成员变量需要使用->符号this->…