考研计组chap3存储系统

目录

一、存储器的基本概念 80

1.按照层次结构

2.按照各种分类

(41)存储介质

(2)存取方式

(3)内存是否可更改

(4)信息的可保存性

(5)读出之后data是否破坏

3.存储器的性能指标

1)存储容量

2)单位成本

3)存储速度

二、主存的基本组成 87+89

1.基本元件

2.存储芯片的结构

3.寻址

三、SRAM vs DRAM  86

1.DRAM

(1)工作原理

(2)特点

1)破坏性读出 and 需要再生

2)需要刷新

3)分两次送行列地址

(3)DRAM刷新

1)集中刷新

2)分散刷新

3)异步刷新

(4)DRAM地址复用技术

2.SRAM

(1)工作原理

(2)特点

1)非破坏性读出  不需要重生

2)不需要刷新

3)同时送行列地址

四、ROM (Read-Only Memory) 88

1.MROM(Mask) 掩模式·····

2.PROM(Programable) 一次可编程·····

3.EPROM(Erasable) 可擦除可编程·····

(1)UVEPROM  紫外线擦除

(2)EEPROM (E^2PROM) 电擦除

4.闪存(Flash存储器)

5.固态硬盘(SSD)

6.ATTN

(1)许多ROM依然可以写

(2)ROM是非易失性的,也可以随机存取

五、提高主存速度 90

1.reason 

2.多模块存储器 90

(1)多体并行存储器

1)高位交叉编址

2)低位交叉编址

(2)单体并行存储器

六、主存与CPU之间的连接 101

1.存储器芯片的基本结构

2.位扩展

3.字扩展

(1)线选法

(2)译码片选法

4.字位同时扩展

七、外存 109

1.disk原理

(1)disk组成

(2)性能指标

1)容量

2)记录密度

3)平均存取时间

4)data传输率

(3)硬盘地址

2.独立冗余磁盘阵列 RAID

(1)RAID0

(2)RAID1

(3)RAID2

(4)RAID3~RAID5(了解)

八、固态硬盘 SSD 111

1.原理

2.组成

3.读写性能

4. vs 机械接盘

5.磨损均衡技术

6. 联系 OS

九、Cache 115

1.工作原理

2.局部性原理

3.性能分析

(1)Cache命中率、缺失率

(2)方式

4.else(联系OS)

5.存在的question

(1)Cache与主存中data块的对应关系 

(2)Cache块小,满了咋办

(3)cpu修改Cache的data,则如何保持与主存中的原data的一致性

十、主存与Cache之间的映射关系 118

1.Cache存放data格式

2.全相联映射

3.直接映射

4.组相连映射

十一、Cache的替换算法 122

1.随机算法(RAND)

2.先入先出(FIFO)

3.最近最少使用算法(LRU)

(1)手算

(2)机器

4.最不经常使用算法(LFU)

十二、Cache写策略 123

1.命中

(1)全写法

(2)回写法

2.未命中

(1)写分配法

(2)非写分配法

3.多级Cache


一、存储器的基本概念 80

1.按照层次结构

Attn:①寄存器集成在CPU中

②辅存和外存的区分不大

2.按照各种分类

(41)存储介质

半导体:Cache 磁介质:disk、硬盘 光介质:光盘  

(2)存取方式

随机存储器(RAM):EPROM、SRAM、DRAM

顺序存取存储器(SAM):磁带

直接存取存储器(DAM):磁盘(SSD) 、光盘 (CD-ROM) 

相联存储器(内存存储器)(CAM):快表

只读存储器 (ROM)

ATTN:不要根据东西的名称分,要根据具体内容

(3)内存是否可更改

只能读ROM

可读写else

(4)信息的可保存性

断电是否发生data丢失:易失性存储器

RAM

非易失性存储器:ROM、磁性存储器、光存储器

(5)读出之后data是否破坏

读了之后摧毁data / 不摧毁:破坏性读出  DRAM and  非破坏性输出 SRAM

3.存储器的性能指标

1)存储容量

2)单位成本

每bit价格

3)存储速度

存储时间、存取周期、主存带宽(data传输率)

存储周期 = 存储时间+恢复时间

主存带宽 :每秒读写的data

二、主存的基本组成 87+89

1.基本元件

存储元  : 电容   +   MOS管

电容存储电荷,写就充电,读就放电

工作原理:根据高低电平(电荷)  

因为电容这边接地,为0V,so用高电平的时候MOS导电,电容充电表示1,之后断开MOS管,电荷就保存在了电容中,在另一端读就为1

低电平MOS绝缘,电容还是0V,无电荷0,在另一端读就为0

多个存储元组成存储单元(存储字),多个存储单元组成存储矩阵(存储体)

2.存储芯片的结构

CPU发出指令,通过MAR获取进行读写的内存地址,通过译码器进行选择哪一块存储芯片的读写,读完之后通过data线送到MDR中,整体过程由CPU控制

MAR存储nbit数据,则译码器就有2^n个存储单位

读写控制线可以由一条or两条线组成

①一条 WE (有上划线) 低写高读

②两条线 WE (有上划线)写 OE(有上划线)读

片选控制线:选择读写内存中的那一块存储芯片上的data,低电平确定

CS (有上划线)、CE (有上划线) ,上划线表示低电平激活

3.寻址

按字节or 字编址

按字节 、字、半字、双字寻址

ATTn:在32bit机器中,1字= 32bit = 4B

三、SRAM vs DRAM  86

1.DRAM

(1)工作原理

运用栅极电容存储信息,1个MOS管,即存储元,多个存储元组成存储体

(2)特点

1)破坏性读出 and 需要再生

通过电容充放电进行读写,so读的时候会放电,电容中的电荷没了,so是破坏性读出

放电之后需要重新充电,“再生”

2)需要刷新

即使不重新读写,电荷也会慢慢流失,so需要定期刷新,三种方式

刷新与重生dis:刷新是按行为单位的

3)分两次送行列地址

地址复用技术

(3)DRAM刷新

1)集中刷新

计算出全部刷新需要的时间,则else进行CPU读取,留下这些时间进行全部刷新,这一部分时间称作死区,此时CPU不能读取

2)分散刷新

读一下刷一次,dis:存取周期翻倍

3)异步刷新

计算出全部刷新的时间,将其分布到每个刷新周期之间,这样就分散了死区,cpu不会等待时间过长

(4)DRAM地址复用技术

未使用之前,1条地址线对应1存储元,译码器连着这么多的线,设计比较难,so使用行译码器和列译码器,条数就开方了,并且芯片引脚也减少

2.SRAM

(1)工作原理

使用6个MOS管,so会存储信息

(2)特点

1)非破坏性读出  不需要重生
2)不需要刷新
3)同时送行列地址

四、ROM (Read-Only Memory) 88

1.MROM(Mask) 掩模式·····

厂家根据用户需求进行设计,之后任何人不能再修改

2.PROM(Programable) 一次可编程·····

用户可DIY,保存之后不能再修改

3.EPROM(Erasable) 可擦除可编程·····

(1)UVEPROM  紫外线擦除

紫外线照射 8~20min

(2)EEPROM (E^2PROM) 电擦除

4.闪存(Flash存储器)

先擦除后写  so V读 > V写

5.固态硬盘(SSD)

控制单元 + Flash芯片

6.ATTN

(1)许多ROM依然可以写

(2)ROM是非易失性的,也可以随机存取

五、提高主存速度 90

1.reason 

存取周期 = 存取时间 + 恢复时间

恢复时间占主要时间,且恢复期间cpu无法读写

2.多模块存储器 90

(1)多体并行存储器

多体模块(理解成内存条)组成

1)高位交叉编址

体号+体内地址,体号表示选择的是哪一块,体内表示模块内的第几个,“竖着编址”

2)低位交叉编址

体内地址+体号,“横着编址”

best 模块数m = 存取周期T/存取时间r

if 想cpu不停止,则 m>= T/r ;m> T/r,模块会有空闲,无法达到最高效,增加成本;m<T/r,cpu仍需等待  

一般是进行字扩展,组与组之间串联,由此确定模块的个数

(2)单体并行存储器

将m体模块合并成一个模块,每次并行读出m个连续的字,so每个存储单元存储m个字,总线宽度也为m个字

六、主存与CPU之间的连接 101

1.存储器芯片的基本结构

移码驱动电路+存储体+读写电路+地址线、片选线、数据线、读/写控制线

2.位扩展

芯片并联,增加data总路读写的效率

3.字扩展

芯片串联,扩容

(1)线选法

直接连接,1地址线--1芯片(组)

(2)译码片选法

使用译码器,n地址线 -- 2^n 芯片(组)

4.字位同时扩展

结合位扩展+字扩展

七、外存 109

1.disk原理

(1)disk组成

磁盘驱动器、磁盘控制器、盘片

(2)性能指标

1)容量
2)记录密度

道密度、位密度、盘密度

因为每条磁道中data数量相同,so外道密度<内道密度

3)平均存取时间

寻道时间、旋转延迟时间、传输时间

4)data传输率

磁盘存储器再单位时间内想主机传送data的字节数

Dr = rN (转速 * 每条磁道容量)

(3)硬盘地址

柱面扇

2.独立冗余磁盘阵列 RAID

因为 数据总线发送data时只能1bit的发,so用串-并交换电路,能同时nbit

实现:多个独立的物理disk组成一个独立的逻辑盘

RAID的应用是在实现手段,安全性差距,等级越大越安全

(1)RAID0

无冗余的,无校验的磁盘阵列,(类比低位编址的多体存储器)

disa:不能检验,错了就错了

(2)RAID1

镜像磁盘阵列(有冗余,有检验)

disa:冗余50%,检验就比较另一份

(3)RAID2

采用可以纠错的海明码的磁盘阵列,,采用k位disk和n位海明校验码

 

eg:4个disk则最少需要3位海明校验码

reason:k+n位最多表示2^(k+n) -1种错误,有一种是没错

so  2^(k+n) -1 >= k+n

参考视频:

b占-里昂-海明码

(4)RAID3~RAID5(了解)

八、固态硬盘 SSD 111

1.原理

闪存技术 、可电擦除 

2.组成

闪存翻译层 + Flash Chips

3.读写性能

为单位读写(类比disk的块)

为单位进行擦除,擦完之后才能写,即使块中有空页,也不能写

支持随机访问

4. vs 机械接盘

SSD快、安静、贵,擦除次数太多就坏了

5.磨损均衡技术

因为擦除太多会损坏,so采用方法

(1)动态擦除 --选擦除次数min

(2)静态擦除 -- 读写需求大的使用擦除次数少的,只读的使用擦除次数多的

6. 联系 OS

九、Cache 115

1.工作原理

SRAM构建,将主存中的部分data先拷贝到Cache中,缓解CPU和主存之间的速度矛盾

2.局部性原理

时间和空间

3.性能分析

(1)Cache命中率、缺失率

Cache命中率 :CPU访问Cache的概率

H = Nc  /(Nc +Nm)

平均访问时间Ta= Htc + (1-H)(tc+tm)  先访问Cache再主存

平均访问时间Ta= Htc + (1-H)tm  同时访问

(2)方式

先访问Cache再主存;同时Cache 和主存

4.else(联系OS)

5.存在的question

(1)Cache与主存中data块的对应关系 

Cache与主存之间的映射关系

(2)Cache块小,满了咋办

Cache替换算法

(3)cpu修改Cache的data,则如何保持与主存中的原data的一致性

Cache写策略

十、主存与Cache之间的映射关系 118

1.Cache存放data格式

有效位+标记+整块data

有效位表示data是否有效,∵全0也可表示具体data

标记表示data在内存中的pos

2.全相联映射

随便放,有空就行

主存地址 = 块号 + 块内地址

adv:空间利用充分

disa:确定data在内存中的位置较慢

3.直接映射

地址号 mod 块号 ,位置唯一

映射到的块号 = 内存地址低位c

c = log2Cache块数

4.组相连映射

先将Cache块进行分组,然后直接映射入组,组内随意放空地方

十一、Cache的替换算法 122

1.随机算法(RAND)

当Cache满了之后,if有新的内存块要访问,随机替换一个Cache行中的data

2.先入先出(FIFO)

eg:4个Cache行,依次访问1,2,3,4,1,2,5,1,2,3,4,5主存块

绿色表示命中,红色代表替换,(中间相同ele省略)

[tip] 使用辅助队列

由图中后半部分发现频繁替换,称作抖动现象

3.最近最少使用算法(LRU)

替换在访问的前几个中没有使用的那一个

(1)手算

往前看,差1个

(2)机器

使用计数器,计数器表示已经几次没有访问该Cache行了,if命中,该块对应清0,else+1;if未命中,有空行,填入Cache,else+1,无空行,找max,剔除,该行置0,else+1

分步解析

此时Cache满了

到5应该替换3,此行置0,else+1

到了3,替换4

到了4,此时最大5,count=3,替换5

到了5,此时最大1,count=3,替换1

4.最不经常使用算法(LFU)

全局不常用,使用计数器,表示该行Cache访问次数。每次访问一个,if为空,放入Cache行,count+1,if不空,命中,+1,未命中,替换min,if有同,FIFO or 行数小的

逐步分解(先换行号小)

此时3Cache2 、3小,5替3

此时3替5

十二、Cache写策略 123

1.命中

(1)全写法

同时修改主存和Cache,存在速度矛盾,so使用写缓存,等止呕控制电路一块写入

(2)回写法

写入Cache,等Cache中该块被替换时,写入主存

2.未命中

未命中说明去主存中寻找,根据将data放不放入Cache进行分

(1)写分配法

放入Cache

(2)非写分配法

不放入Cache

Attn:非写分配法不放入Cache,全写法全修改,就不需要从主存放入Cache中了,so搭配使用

写分配 和 回写法搭配使用

3.多级Cache

再将Cache进行分级,级越高离CPU越近,容量越小,速度越快

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/26885.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SwaggerSpy:一款针对SwaggerHub的自动化OSINT安全工具

关于SwaggerSpy SwaggerSpy是一款针对SwaggerHub的自动化公开资源情报&#xff08;OSINT&#xff09;安全工具&#xff0c;该工具专为网络安全研究人员设计&#xff0c;旨在简化广大红队研究人员从SwaggerHub上收集已归档API信息的过程&#xff0c;而这些OSINT信息可以为安全人…

【全网瞩目】最强文生图模型,Stable Diffusion 3技术报告解禁

12号&#xff0c;终于在Hugging Face上出现了 Stable Diffusion 3 Medium。没错&#xff0c;正如他所承诺的&#xff0c;最强文生图模型真的开源了。而且此次开源不仅是以SD2的比较下性能得到了更好的升级&#xff0c;同时也向我们展示了最前沿的DiT技术——MMDiT。 是什么让 S…

【乐吾乐2D可视化组态编辑器】导出HTML,下载离线部署包

乐吾乐2D可视化组态编辑器地址&#xff1a;https://2d.le5le.com/ 使用步骤 1. 从“文件”菜单导出HTML 导出为 HTML 需要一定的开发能力&#xff0c;后续不再维护&#xff0c;即将下线&#xff0c;推荐使用 下载离线部署包&#xff08;html&#xff09; 2. 解压 3. 下载后端…

阿里云运维第一步(监控):开箱即用的监控

作者&#xff1a;仲阳 这是云的时代&#xff0c;现在云计算已经在各行各业广泛的应用。但是上云对于大多数客户来说&#xff0c;依然有很大的学习成本&#xff0c;如下图仅是阿里云都有几百款产品&#xff0c;怎么选择&#xff1f;怎么用&#xff1f;对于客户来说都是问题。“…

手撕设计模式——计划生育之单例模式

1.业务需求 ​ 大家好&#xff0c;我是菠菜啊。80、90后还记得计划生育这个国策吗&#xff1f;估计同龄的小伙伴们&#xff0c;小时候常常被”只生一个好“”少生、优生“等宣传标语洗脑&#xff0c;如今国家已经放开并鼓励生育了。话说回来&#xff0c;现实生活中有计划生育&…

2024网络安全学习路线 非常详细 推荐学习

关键词&#xff1a;网络安全入门、渗透测试学习、零基础学安全、网络安全学习路线 首先咱们聊聊&#xff0c;学习网络安全方向通常会有哪些问题 1、打基础时间太长 学基础花费很长时间&#xff0c;光语言都有几门&#xff0c;有些人会倒在学习 linux 系统及命令的路上&#…

嵌套查询(二)-谓词EXISTS实现嵌套查询

一、EXISTS谓词 1、作用&#xff1a;用于判断一个子查询的结果是否为空 2、使用语法&#xff1a; 【NOT】EXISTS&#xff08;子查询&#xff09; 语义&#xff1a;如果子查询的查询结果不为空&#xff0c;则EXISTS为真&#xff0c;否则为假 二、举例 1、举例1&#xff1a…

【数据结构 |集合框架、泛型】初始集合框架、时间(空间)复杂度、简单认识泛型

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; &#x1f388;丠丠64-CSDN博客&#x1f388; ✨✨ 帅哥美女们&#xff0c;我们共同加油&#xff01;一起…

【启明智显彩屏应用】Model3A 7寸触摸彩屏的充电桩应用方案

一、充电桩概述 &#xff08;一&#xff09;充电桩诞生背景 随着社会的进步和人们生活质量的提升&#xff0c;汽车已逐渐融入每个家庭的日常生活中。然而&#xff0c;汽车数量的激增也带来了严重的环境污染问题&#xff0c;特别是尾气排放。为了应对这一挑战&#xff0c;新能源…

用PlayCanvas打造一个3D模型

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 基于 PlayCanvas 的 3D 物理场景开发 应用场景介绍 PlayCanvas 是一款功能强大的 3D 引擎&#xff0c;可用于创建各种类型的 3D 体验&#xff0c;包括游戏、模拟和交互式可视化。本技术博客将介绍如何使用 Pl…

怎么把wma格式转化为mp3格式?四种wma格式转成MP3格式的方法

怎么把wma格式转化为mp3格式&#xff1f;转换WMA格式音频文件为MP3格式是一个常见的需求&#xff0c;尤其是在我们希望在不同设备或平台上播放音频时。WMA格式虽然在Windows系统中较为常见&#xff0c;但在其他平台上的兼容性可能不如MP3格式。因此&#xff0c;将WMA转换为MP3是…

基于Spring Boot的智能分析平台

项目介绍&#xff1a; 智能分析平台实现了用户导入需要分析的原始数据集后&#xff0c;利用AI自动生成可视化图表和分析结论&#xff0c;改善了传统BI系统需要用户具备相关数据分析技能的问题。该项目使用到的技术是SSMSpring Boot、redis、rabbitMq、mysql等。在项目中&#…

在 Wed 中应用 MyBatis(同时使用MVC架构模式,以及ThreadLocal 事务控制)

1. 在 Wed 中应用 MyBatis&#xff08;同时使用MVC架构模式&#xff0c;以及ThreadLocal 事务控制&#xff09; 文章目录 1. 在 Wed 中应用 MyBatis&#xff08;同时使用MVC架构模式&#xff0c;以及ThreadLocal 事务控制&#xff09;2. 实现步骤&#xff1a;1. 第一步&#xf…

Vulnhub-DC-1,7

靶机IP:192.168.20.141 kaliIP:192.168.20.128 网络有问题的可以看下搭建Vulnhub靶机网络问题(获取不到IP) 前言 1和7都是Drupal的网站&#xff0c;只写了7&#xff0c;包含1的知识点 信息收集 用nmap扫描端口及版本号 进入主页查看作者给的提示&#xff0c;不是暴力破解的…

nodejs湖北省智慧乡村旅游平台-计算机毕业设计源码00232

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;旅游行业当然也不能排除在外。智慧乡村旅游平台是以实际运用为开发背景&#xff0c;运用软件工程开发方法&#xff0c;采…

Weighted A* 改进型(1):XDP

本文的主要内容来自于文献[1]&#xff0c;总的来说这篇文献给我的感觉就是理论证明非常精妙&#xff0c;最后的实际效果也是提升的非常明显。 在Introduction中作者给出了一般Best first search&#xff08;BFS&#xff0c;常用的包括A *&#xff0c;weighted A * &#xff0c…

TK防关联引流系统:全球多账号运营,一“键”掌控!

在TikTok的生态系统中&#xff0c;高效管理多个账号对于品牌推广的成功起着决定性的作用。TK防关联引流系统&#xff0c;作为一款专门为TikTok用户打造的强大工具&#xff0c;为全球范围内的多账号运营提供了坚实的支持。 TK防关联引流系统的核心优势体现在以下几个方面&#x…

anaconda安装pytorch-快速上手99%可以(可以虚拟环境OR不进行虚拟环境)

一、预备工作 先检查自己是否有anaconda 在cmd里面输入conda --version查看 二、在anaconda中创建虚拟环境 1.1 打开Anaconda Prompt 1.2 进行自定义安装python 将其中的自定义地址和版本换成自己想安装的地址和版本 我这里安装的地址是E:\Anaconda\DL,python版本是3.8.3…

uniapp地图自定义文字和图标

这是我的结构&#xff1a; <map classmap id"map" :latitude"latitude" :longitude"longitude" markertap"handleMarkerClick" :show-location"true" :markers"covers" /> 记住别忘了在data中定义变量…

Sqoop学习详细介绍!!

一、Sqoop介绍 Sqoop是一款开源的工具&#xff0c;主要用于在Hadoop(HDFS/Hive/HBase)与传统的数据库(mysql、postgresql...)间进行数据的传递&#xff0c;可以将一个关系型数据库&#xff08;例如 &#xff1a; MySQL ,Oracle ,Postgres等&#xff09;中的数据导进到Hadoop的H…