深度学习500问——Chapter11:迁移学习(2)

文章目录

11.2 迁移学习的基本思路有哪些

11.2.1 基于样本迁移

11.2.2 基于特征迁移

11.2.3 基于模型迁移

11.2.4 基于关系迁移


11.2 迁移学习的基本思路有哪些

迁移学习的基本方法可以分为四种。这四种基本方法分别是:基于样本的迁移,基于模型的迁移,基于特征的迁移,及基于关系的迁移。

11.2.1 基于样本迁移

基于样本的迁移学习方法(Instance based Transfer Learning)根据一定的权重生成规则,对数据样本进行重用,来进行迁移学习。图14形象地表示了基于样本迁移方法的思想源域中存在不同种类的动物,如狗、鸟、猫等,目标域只有狗这一种类别。在迁移时,为了最大限度地和目标域相似,我们可以人为地提高源域中属于狗这个类别的样本权重。

图14 基于样本的迁移学习方法示意图

在迁移学习中,对于源域Ds和目标域Dt,通常假定产生它们的概率分布是不同且未知的(P(Xs) =P(Xt))。另外,由于实例的维度和数量通常都非常大,因此,直接对 P(Xs) 和P(Xt) 进行估计是不可行的。因而,大量的研究工作 [Khan and Heisterkamp,2016, Zadrozny, 2004, Cortes et al.,2008, Dai et al., 2007, Tan et al.,2015, Tan et al., 2017]着眼于对源域和目标域的分布比值进行估计(P(Xt)/P(Xs))。所估计得到的比值即为样本的权重。这些方法通常都假设P(xs) <并且源域和目标域的条件概率分布相同(P(y|xs)=P(y|xt))。特别地,上海交通大学Dai等人 [Dai et al.,2007]提出了 TrAdaboost方法,将AdaBoost的思想应用于迁移学习中,提高有利于目标分类任务的实例权重、降低不利于目标分类任务的实例权重,并基于PAC理论推导了模型的泛化误差上界。TrAdaBoost方法是此方面的经典研究之一。文献 [Huang et al.,2007]提出核均值匹配方法 (Kernel Mean atching, KMM)对于概率分布进行估计,目标是使得加权后的源域和目标域的概率分布尽可能相近。在最新的研究成果中,香港科技大学的Tan等人扩展了实例迁移学习方法的应用场景,提出 了传递迁移学习方法(Transitive Transfer Learning, TTL) [Tan et al.,2015] 和远域迁移学习 (Distant Domain Transfer Learning,DDTL) [Tan et al.,2017],利用联合矩阵分解和深度神经网络,将迁移学习应用于多个不相似的领域之间的知识共享,取得了良好的效果。

​ 虽然实例权重法具有较好的理论支撑、容易推导泛化误差上界,但这类方法通常只在领域间分布差异较小时有效,因此对自然语言处理、计算机视觉等任务效果并不理想。而基于特征表示的迁移学习方法效果更好,是我们研究的重点。

11.2.2 基于特征迁移

基于特征的迁移方法(Feature based Transfer Learning)是指通过特征变换的方式互相迁移 [Liu et al.,2011, Zheng et al.,2008, Hu and Yang 2011] 来减少源域和目标域之间的差距;或者将源域和目标域的数据特征变换到统一特征空间中 [Pan et al.,2011, Long et al.,2014b, Duan et al.,2012], 然后利用传统的机器学习方法进行分类识别。根据特征的同构和异构性,又可以分为同构和异构迁移学习。图15很形象地表示了两种基于特征的迁移学习方法。

图15 基于特征的迁移学习方法示意图

基于特征的迁移学习方法是迁移学习领域中最热门的研究方法,这类方法通常假设源域和目标域之间有一些交叉的特征。香港科技大学的Pan等人[Pan et al.,2011] 提出的迁移成分分析方法(Transfer Component Analysis,TCA)是其中较为经典的一个方法。该方法的核心内容是以最大均值方差异(Maximum MeanDiscrepancy, MMD)[Borgwardt et al.,2006] 作为度量准则,将不同数据领域中的分布差异最小化。加州大学伯克利分校的Blitzer等人[Blitzer et al.,2006]提出了一种基于结构对应的学习方法(Structural Corresponding Learning,SCL),该算法可以通过映射将一个空间中独有的一些特征变换到其他所有空间中的轴特征上,然后在该特征上使用机器学习的算法进行分类预测。清华大学龙明盛等人[Long et al.,2014b] 提出在最小化分布距离的同时,加入实例选择的迁移联合匹配(Tran-fer Joint Matching, TJM) 方法,将实例和特征迁移学习方法进行了有机的结合。澳大利亚卧龙岗大学的 Jing Zhang 等人[Zhang et al.,2017a]提出对于源域和目标域各自训练不同 的变换矩阵,从而达到迁移学习的目标。

11.2.3 基于模型迁移

基于模型的迁移方法(Parameter/Model based Transfer Learning)是指从源域和目标域中找到他们之间共享的参数信息,以实现迁移的方法。这种迁移方式要求的假设条件是:源域中的数据与目标域中的数据可以共享一些模型的参数。其中代表性的工作主要有 [Zhang et al., 2010, Zhao et al.,2011, Pan et al.,2008b, Pan et al.,2008a]。图16形象地表示了基于模型的迁移学习方法的基本思想。

图16 基于模型的迁移学习方法示意图

​ 其中,中科院计算所的Zhao等人[Zhao et al.,2011]提出了TransEMDT方法。该方法首先针对已有标记的数据,利用决策树构建鲁棒性的行为识别模型,然后针对无标定数据,利用K-Means聚类方法寻找最优化的标定参数。西安邮电大学的Deng等人[Deng et al.,2014]也用超限学习机做了类似的工作。香港科技大学的Pan等人[Pan et al.,2008a]利用HMM,针对Wifi室内定位在不同设备、不同时间和不同空间下动态变化的特点,进行不同分布下的室内定位研究。另一部分研究人员对支持向量机 SVM 进行了改进研究 [Nater et al.,2011, Li et al.,2012]。这些方法假定 SVM中的权重向量 w 可以分成两个部分: w = wo+v, 其中 w0代表源域和目标域的共享部分, v 代表了对于不同领域的特定处理。在最新的研究成果中,香港科技大学的 Wei 等人 [Wei et al.,2016b]将社交信息加入迁移学习方法的 正则项中,对方法进行了改进。清华大学龙明盛等人[Long et al.,2015a, Long et al.,2016, Long et al.,2017]改进了深度网络结构,通过在网络中加入概率分布适配层,进一步提高了深度迁移学习网络对于大数据的泛化能力。

11.2.4 基于关系迁移

基于关系的迁移学习方法(Relation Based Transfer Learning)与上述三种方法具有截然不同的思路。这种方法比较关注源域和目标域的样本之间的关系。图17形象地表示了不同领域之间相似的关系。

​ 就目前来说,基于关系的迁移学习方法的相关研究工作非常少,仅有几篇连贯式的文章讨论:[Mihakova et al.,2007, Mihakova and Mooney,2008, Davis]。这些文章都借助于马尔科夫逻辑网络(Markov Logic Net)来挖掘不同领域之间的关系相似性。

​ 我们将重点讨论基于特征和基于模型的迁移学习方法,这也是目前绝大多数研究工作的热点。

图17 基于关系的迁移学习方法示意图

图18 基于马尔科夫逻辑网的关系迁移

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/26848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sa-Token鉴权与网关服务实现

纠错&#xff1a; 在上一部分里我完成了微服务框架的初步实现&#xff0c;但是先说一下之前有一个错误&#xff0c;就是依赖部分 上次的学习中我在总的父模块下引入了spring-boot-dependencies&#xff08;版本控制&#xff09;我以为在子模块下就不需要再引用了&#xff0c;…

Opencv图像梯度计算

Opencv图像梯度计算 Sobel算子 可以理解为是做边缘检测的一种方法。 首先说明自己对图像梯度的简单理解&#xff1a;简单理解就是图像的颜色发生变化的边界区域在X方向和Y方向上的梯度值 Gx Gy 而Gx和Gy处的梯度的计算—使用下面的公式来进行计算。 G x [ − 1 0 1 − 2 0 …

【计算机毕业设计】258基于微信小程序的课堂点名系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

总结【GetHub的WebAPI,ASSET_ID】,【Linux的jq命令】(草稿版+实际操作)

目录 1.介绍一下github中的 asset_id 2. GitHub 的 asset_id相关操作 2.1.获取特定 repository 的 release 列表&#xff1a; 2.2.获取特定 release 中的 asset 列表&#xff0c;并找到 asset_id&#xff1a; 2.3.使用ASSET_ID获取资材 3.返回的 assets 的信息 是什么样样…

【STM32CubeIDE -使用-调试过程中-遇到的“弹窗”报错问题-部分总结-处理方式】

【STM32CubeIDE -使用-调试过程中-遇到的“弹窗”报错问题-部分总结-处理方式】 1、前言2、软件环境问题1&#xff1a;Confirm Perspective Switch&#xff08;确认视角切换&#xff09;&#xff08;1&#xff09;问题描述:This kind of launch is configured to open the Debu…

14、modbus poll 使用教程小记1

开发平台&#xff1a;Win10 64位 Modbus Slave版本&#xff1a;64位 7.0.0 Modbus Poll版本&#xff1a;64位 7.2.2 因为项目中经常会用到modbus协议&#xff0c;所以就避免不了的要使用modbus测试工具&#xff0c;Modbus Slave/Poll无疑是众多测试工具中应用最广泛的。 文章目…

C语言的数据结构:串、数组、广义表

一、串 1、串的定义 串是一个线性表&#xff0c;但其节点中的内容只能为字符&#xff0c;所以也称为字符串。 字符串中可以有多个字符&#xff0c;也可以没有字符。没有字符的叫作&#xff1a;空串。 空串&#xff1a;""。 有值的串&#xff1a;"1123"。 只…

yolov3 详解

文章目录 1、yolov3原理2、损失函数3、yolov3改进4、使用opencv实现yolov35、卷积神经网络工作原理 1、yolov3原理 参考视频 darknet53&#xff1a;52个卷积层和1个全联接层 输入图像为416416 1313 -》 下采样32倍 2626 -》 下采样16倍 5252 -》 下采样8倍 由标注框中心点落在…

13600KF+3060Ti,虚拟机安装macOS 14,2024年6月

距离上次装macOS虚拟机已经有一段时间了&#xff0c;macOS系统现在大版本升级的速度也是越来越快了&#xff0c;由于Office只支持最新三个版本的macOS&#xff0c;所以现在保底也得安装macOS 12了&#xff0c;我这次是用macOS 14做实验&#xff0c;13和12的安装方式和macOS 14一…

eNSP学习——PPP的认证

目录 主要命令 原理概述 实验目的 实验内容 实验拓扑 实验编址 实验步骤 1、基本配置 2、搭建OSPF网络 3、配置PPP的PAP认证 4、配置PPP的CHAP认证 主要命令 //设置本端的PPP协议对对端设备的认证方式为 PAP&#xff0c;认证采用的域名为huawei [R3]int s4/0/0 [R…

Android 14 系统启动流程 之 启动init进程、启动Zygote进程

Android 14 系统启动流程 之 启动init进程、启动Zygote进程 废话不多说&#xff0c;先上图&#xff0c;不清楚的可以在评论区留言。

【论文阅读】-- 时态合并树状图:时态标量数据的基于拓扑的静态可视化

时态合并树状图&#xff1a;时态标量数据的基于拓扑的静态可视化 摘要1 引言2 相关工作及背景介绍2.1 增广合并树2.2 (增强)合并树的可视化与跟踪2.3 特征跟踪2.4 数据线性化 3 时间合并树状图3.1 映射单个时间步长&#xff1a; R d → R R^d \rightarrow R Rd→R3.2 映射所有时…

python:faces swap

# encoding: utf-8 # 版权所有 2024 涂聚文有限公司 # 许可信息查看&#xff1a;pip install boost # 描述&#xff1a;pip install boost # pip install dlib # pip install cmake3.25.2 # pip install dlib19.24.2 如果安装不上&#xff0c;按此法 # Author : geovindu,G…

实用软件下载:MathType最新安装包及详细安装教程

MathType是强大的数学公式编辑器&#xff0c;与常见的文字处理软件和演示程序配合使用&#xff0c;能够在各种文档中加入复杂的数学公式和符号&#xff0c;可用在编辑数学试卷、书籍、报刊、论文、幻灯演示等方面&#xff0c;是编辑数学资料的得力工具。MathType与常见文字处理…

【乐吾乐2D可视化组态编辑器】条件变化,触发告警动画

条件触发告警动画 乐吾乐2D可视化组态编辑器地址&#xff1a;https://2d.le5le.com/ 如图所示&#xff0c;左侧文本图元数值一直在变化&#xff0c;当数值大于等于50的时候&#xff0c;右侧矩形图元执行告警动画&#xff0c;当数值小于50的时候&#xff0c;右侧图元恢复正常。…

【Spring EL<二>✈️✈️ 】SL 表达式结合 AOP 注解实现鉴权

目录 &#x1f37b;前言 &#x1f378;一、鉴权&#xff08;Authorization&#xff09; &#x1f37a;二、功能实现 2.1 环境准备 2.2 代码实现 2.3 测试接口 &#x1f379;三、测试功能 3.1 传递 admin 请求 ​ 3.2 传递普通 user 请求 &#x1f37b;四、章末 &a…

Arduino 项目:太阳能跟踪器

在本文中&#xff0c;您将逐步学习如何使用 光敏电阻和舵机制作双轴太阳能跟踪器 Arduino 项目。在这个项目中&#xff0c;我们将使用一些光敏传感器来跟踪阳光&#xff0c;并将利用舵机将太阳能电池板引导到可提高其效率的区域。 此项目所需的组件 序号部件名称描述数量备注…

Excel根据身份证号提取信息

概览 本篇文章主要对根据身份证号码提取出生年月日、年龄、性别、退休年龄这三项进行讲解。 一. 提取出生年月日 公式&#xff1a;TEXT(MID(B2,7,8),“0000-00-00”) MID(B2,7,8)&#xff1a;表示从单元格 B2 中的字符串&#xff08;这里是身份证号&#xff09;&#xff0c…

《web应用技术》第十一次作业

1、验证过滤器进行权限验证的原理。 代码展示&#xff1a; Slf4j WebFilter(urlPatterns "/*") public class LoginCheckFilter implements Filter { Override public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) thro…

Java高级技术探索:深入理解JVM内存分区与GC机制

文章目录 引言JVM内存分区概览垃圾回收机制&#xff08;GC&#xff09;GC算法基础常见垃圾回收器ParNew /Serial old 收集器运行示意图 优化实践结语 引言 Java作为一门广泛应用于企业级开发的编程语言&#xff0c;其背后的Java虚拟机&#xff08;JVM&#xff09;扮演着至关重…