python数据分析-房价数据集聚类分析

一、研究背景和意义

随着房地产市场的快速发展,房价数据成为了人们关注的焦点。了解房价的分布特征、影响因素以及不同区域之间的差异对于购房者、房地产开发商、政府部门等都具有重要的意义。通过对房价数据的聚类分析,可以深入了解房价的内在结构和规律,为相关决策提供科学依据。

研究意义:

  1. 为购房者提供参考:通过聚类分析,可以将房价数据分为不同的类别,购房者可以根据自己的需求和预算选择适合的房源。
  2. 帮助房地产开发商制定营销策略:了解不同区域的房价特征和需求,可以帮助房地产开发商制定更有针对性的营销策略,提高销售效率。
  3. 为政府部门提供决策支持:政府部门可以通过房价数据的聚类分析,了解房地产市场的发展趋势和存在的问题,制定相应的政策措施,促进房地产市场的健康发展。
  4. 推动房地产市场的研究:房价数据的聚类分析是房地产市场研究的重要内容之一,通过对房价数据的深入分析,可以推动房地产市场的研究不断深入。

二、实证分析

首先导入数据集基本的包

数据和代码

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt

然后读取数据集和展示

# 读取文件
file_path = 'df_cleaned2.csv'
data = pd.read_csv(file_path, encoding='utf-8')# 展示数据的前几行以了解结构
print(data.head())

随后查看数据类型

 

接下来查看缺失值的情况

# 查看缺失值情况
missing_values = data.isnull().sum()
missing_values

 

# 绘制缺失值情况的柱状图
# 绘制缺失值情况的柱状图
plt.bar(missing_values.index, missing_values.values, color=['black' if value == 0 else 'white' for value in missing_values.values])
plt.xlabel("变量")
plt.ylabel("缺失值数量")
plt.title("数据集缺失值情况")
plt.xticks(rotation=90)
plt.show()

从上面的结果和可视化可以发现该数据集没有缺失值,接下来进行统计学描述性分析

# 描述性分析
data.describe()

接下来进行特征可视化,首先进行房价直方图可视化

import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号
# 可视化
# 绘制总价的直方图
plt.hist(data["总价"], bins=20,color='pink')
plt.xlabel("总价")
plt.ylabel("频数")
plt.title("总价分布直方图")
plt.show()

 

 

接下来进行区域分析 

# 区域分析
data["区域位置"] = data["区域位置"].astype("category")
data.boxplot(column="总价", by="区域位置",boxprops={'color':'blue'})
plt.xlabel("区域")
plt.ylabel("总价")
plt.title("不同区域的总价箱线图")
plt.show()

 

# 绘制不同户型的平均总价柱状图

data.groupby("户型结构")["总价"].mean().plot(kind="bar",color='orange')
plt.xlabel("户型")
plt.ylabel("平均总价")
plt.title("不同户型的平均总价柱状图")
plt.show()

接下来计算特征直接的相关系数

correlation_matrix = data.corr()
correlation_matrix

 

热力图:

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("相关系数热力图")
plt.show()

接下来进行聚类分析,首先进行特征选择,选择特征:关注度、总价、卫生间数量、建筑面积,然后标准化特征

随后使用手肘方法和轮廓系数确定最佳 K 值

sse = {}
silhouette_scores = {}
for k in range(2, 11):  # 从 2 开始,因为轮廓系数至少需要 2 个簇kmeans = KMeans(n_clusters=k, random_state=42).fit(scaled_selected_features)sse[k] = kmeans.inertia_silhouette_scores[k] = silhouette_score(scaled_selected_features, kmeans.labels_)
# 绘制手肘图
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(list(sse.keys()), list(sse.values()), marker='o')
plt.xlabel("Number of Clusters (K)")
plt.ylabel("SSE (Sum of Squared Errors)")
plt.title("Elbow Method for Determining Optimal K Value")
plt.grid(True)

接下来使用 PCA 进行降维以便于可视化

pca = PCA(n_components=2)  # 降至 2 维
pca_result = pca.fit_transform(scaled_selected_features)# 可视化聚类结果
plt.figure(figsize=(10, 6))
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=labels, cmap='viridis', marker='o')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title(f'K-means Clustering with K={k} (PCA Reduced)')
plt.grid(True)
plt.show()

随后得出聚类中心

 

接下来根据聚类中心画出雷达图

# 标签,用于表示不同的聚类中心
labels = ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4']# 特征数
num_features = len(centers[0])
angles = np.linspace(0, 2 * np.pi, num_features, endpoint=False).tolist()# 将第一个特征点重复以闭合雷达图
centers = np.concatenate((centers, centers[:,[0]]), axis=1)
angles += angles[:1]fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)# 绘制雷达图
for i in range(len(centers)):ax.plot(angles, centers[i], linewidth=2, label=labels[i])ax.fill(angles, centers[i], alpha=0.25)# 添加标题和图例
plt.title('Radar Chart of Clusters')
plt.legend(loc='upper right', bbox_to_anchor=(1.1, 1.1))plt.show()

接下来可视化主成分

# 可视化主成分 1 的载荷
plt.figure(figsize=(8, 4))
colors = ['red', 'green', 'blue', 'yellow', 'purple', 'orange', 'pink', 'brown', 'gray', 'cyan']
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC1'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC1')
plt.title('PCA Loadings for Principal Component 1')
plt.show()# 可视化主成分 2 的载荷
plt.figure(figsize=(8, 4))
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC2'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC2')
plt.title('PCA Loadings for Principal Component 2')
plt.show()

 

 三、小结

本研究通过对房价数据的聚类分析,将房价数据分为了不同的类别,发现了房价的分布特征和规律。通过特征选择和标准化处理,提高了聚类分析的准确性和可靠性。使用手肘方法和轮廓系数确定了最佳的 K 值,为聚类分析提供了科学依据。通过 PCA 进行降维,可视化了主成分,进一步深入了解了房价数据的内在结构。本研究的结果对于购房者、房地产开发商、政府部门等都具有重要的参考价值,可以为相关决策提供科学依据。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/26422.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter 简化线程Isolate的使用

文章目录 前言一、完整代码二、使用示例1、通过lambda启动线程2、获取线程返回值3、线程通信4、结束isolate 总结 前言 flutter的线程是数据独立的,每个线程一般通过sendport来传输数据,这样使得线程调用没那么方便,本文将提供一种支持lambd…

音频处理1_基本概念

AI变声和音乐创作的基础 声音本质上是人类可察觉范围内的气压周期性波动, 即声波 声波是一种连续信号,在任意时间内的声音信号有无数个取值。对于只能读取有限长数组计算机来说,我们需要将连续的声音信号转换为一个离散的序列,即数字化表示。…

法考报名必看,99%高过审率证件照片电子版制作技巧

在2024年,法考备战已经如火如荼进行中,作为进入法律行业的第一步,参加法考的重要性不言而喻。而作为报名过程中必不可少的一环,报名照片要求以及证件照制作技巧更是需要我们特别重视的部分。想要在这个过程中顺利通过审核&#xf…

【全开源】图书借阅管理系统源码(ThinkPHP+FastAdmin)

📚图书借阅管理系统:打造你的私人图书馆 一款基于ThinkPHPFastAdmin开发的简易图书借阅管理系统,一款轻量级的图书借阅管理系统,具有会员管理,图书管理,借阅及归还管理,会员充值等基本功能&…

使用 PNPM 从 0 搭建 monorepo,测试并发布

1 目标 通过 PNPM 创建一个 monorepo(多个项目在一个代码仓库)项目,形成一个通用的仓库模板。 这个仓库既可以用于公司存放和管理所有的项目,也可以用于将个人班余的所有积累整合其中。 这里以在 monorepo 项目中搭建 web compon…

x64-linux下在vscode使用vcpkg

1.使用vscode远程连接上对应的linux ,或者直接在图形化界面上使用。 2.安装vcpkg 插件,然后打开插件设置。 注意:defalut和host的主机一定和你自己的主机一致,且必须符合vcpkg三元组格式,其中你可以选择工作台的设置&a…

揭秘!5大策略让广告变现长久有效

在数字化时代的浪潮下,广告变现作为自媒体和APP开发者重要的收入来源,越来越受到重视。 但如何让这种变现方式长久持续,成为许多内容创作者与平台运营者思考的问题。 本文旨在探讨广告变现的持久之道,通过分析前端展示、合规性、…

OpenCV特征匹配

1、OpenCV Brute-Force匹配器 Brute-Force匹配器的匹配方法非常简单,输入两张图像所分别对应的特征(特征点坐标与特征点域对应的描述子),循环遍历两幅图像中的特征,计算第一幅图像与第二幅图像之间每个特征点之间的距…

【日记】第一次养植物,没什么经验……(781 字)

正文 前两天梦见灵送的几盆植物全都死掉了。梦里好伤心。醒来与她说这件事,她宽慰我说,梦都是反着的,肯定能活得很好的。于是忽然记起昨天给植物换水时,文竹的根居然从花盆底部伸吊了出来,以前都没有这种情况来着&…

ArcGIS Pro 3.0加载在线高德地图

1、打开ArcGIS Online官网,登录自己的账号,登录后效果如下图所示 官网地址:https://www.arcgis.com/home/webmap/viewer.html 2、点击Add,选择Add Layer from Web,如下图所示 3、在显示的Add Layer from Web页面内&am…

RabbitMQ-Stream(高级详解)

文章目录 什么是流何时使用 RabbitMQ Stream?在 RabbitMQ 中使用流的其他方式基本使用Offset参数chunk Stream 插件服务端消息偏移量追踪示例 示例应用程序RabbitMQ 流 Java API概述环境创建具有所有默认值的环境使用 URI 创建环境创建具有多个 URI 的环境 启用 TLS…

c#调用c++dll方法

添加dll文件到debug目录,c#生成的exe的相同目录 就可以直接使用了,放在构造函数里面测试

手机流畅运行470亿参数大模型,上交大发布PowerInfer-2推理框架,性能提升29倍

苹果一出手,在手机等移动设备上部署大模型迅速成为行业焦点。 目前,移动设备上运行的模型相对较小(苹果的是3B,谷歌的是2B),并且消耗大量内存,这在很大程度上限制了其应用场景。 即使是苹果&…

linux中: IDEA 由于JVM 设置内存过小,导致打开项目闪退问题

1. 找到idea安装目录 由于无法打开idea,只能找到idea安装目录 在linux(debian/ubuntu)中idea的插件默认安装位置和配置文件在哪里? 默认路径: /home/当前用户名/.config/JetBrains/IntelliJIdea2020.具体版本号/options2. 找到jvm配置文件 IDEA安装…

MNIST手写字符分类-卷积

MNIST手写字符分类-卷积 文章目录 MNIST手写字符分类-卷积1 模型构造2 训练3 推理4 导出5 onnx测试6 opencv部署7 总结 在上一篇中,我们介绍了如何在pytorch中使用线性层ReLU非线性层堆叠的网络进行手写字符识别的网络构建、训练、模型保存、导出和推理测试。本篇文…

Redis高性能原理:Redis为什么这么快?

目录 前言: 一、Redis知识系统观 二、Redis为什么这么快? 三、Redis 唯快不破的原理总结 四、Redis6.x的多线程 前言: Redis 为了高性能,从各方各面都进行了优化。学习一门技术,通常只接触了零散的技术点&#xff…

解决linux jenkins要求JDK版本与项目版本JDK不一致问题

背景–问题描述: 新入职公司,交接人说jenkins运行有问题,现在都是手动发布,具体原因让我自己看(笑哭)。我人都蒙了,测试环境都手动发布,那不是麻烦的要死! 接手后&am…

推荐几款短链接工具系统软件

1、C1N短网址(c1n.cn) 为了提升你的品牌并吸引新的受众,C1N短网址可以帮助你以最简单的方式进行科学分析、决策和促进变革。帮助您真正了解客户并促进转型,C1N短网址,它不仅是一种工具,也是一种专业服务。该品牌成立于2018年&…

引入tinyMCE富文本框在vue3中的使用

实现效果: 官网地址:TinyMCE 7 Documentation | TinyMCE Documentation 1.下载依赖(我使用的版本是5.0 目前最新版本到7了) pnpm/npm install tinymce5.0.0 -S pnpm/npm install tinymce/tinymce-vue -S 2.在public文件夹下…