共话大模型技术进展与挑战,CCF大模型论坛北京会议圆满落幕!

2024 年 6 月 6 日中国计算机学会大模型论坛(CCF FoLM)主题会议在北京顺利举办。本次会议主题为“大模型技术进展与挑战”,各位专家围绕大模型技术的前沿动态、发展趋势及技术挑战等议题展开深入探讨,为广大从业者、研究者提供了一场丰富的学术盛宴。本次会议还宣布了“CCF 大模型安全挑战赛”的正式启动!

2024 年 6 月 6 日,中国计算机学会大模型论坛(CCF FoLM)主题会议在北京清华科技园科技大厦举办。

CCF 大模型论坛于今年 3 月正式成立,由腾讯、中国移动、三六零集团、海光信息、智谱AI、第四范式、稀宇科技、并行科技、无问芯穹、瑞莱智慧科技、生数科技、清程极智、麦伽智能、面壁智能、聆心智能共同发起,旨在建设专注于大模型研究与应用的领先智库和高效交流平台,促成国内大模型的生态合力,共同推进大模型技术的前沿发展和应用

图片

本次会议上午部分由 CCF 大模型论坛学术秘书、复旦大学邱锡鹏教授主持,下午部分由 CCF 大模型论坛学术秘书、清华大学东昱晓教授主持。

图片

图|邱锡鹏主持开场

CCF 杰出会员、常务理事、CCF 大模型论坛副主席、中国人民大学人工智能学院院长文继荣教授作开幕式致辞。

图片

图|文继荣作开幕致辞

智谱AI GLM 技术团队研究员顾晓韬、清华大学长聘教授、国家杰青黄民烈、华为语音语义首席科学家刘群、复旦大学计算机学院教授邱锡鹏、阿布扎比技术创新研究所研究员 Quentin Malartic、清华大学电子工程系长聘教授、系主任汪玉、清华大学计算机系长聘教授、清华大学计算机系高性能所副所长翟季冬、清华大学计算机系博世 AI 教授、清华大学人工智能研究院副院长朱军、哈尔滨工业大学计算学部长聘教授,人工智能研究院副院长车万翔等大模型领域专家学者受邀出席并做主题报告。(按姓名拼音首字母排序)

来自阿布扎比技术创新研究所的 Quentin Malartic 博士发表了主题报告《The Falcon Series of Open Language Models》,他主要讲解了 Falcon 模型的研究进展,包括数据处理、训练分解、模型架构,以及如何去构建对话树来进行研究。他还介绍了对于 Falcon 模型的评价细节,以及视觉语言模型的情况。

图片

图|Quentin Malartic 作主题报告

CCF大模型论坛常委会员、清华大学黄民烈教授围绕大语言模型尤其是中文大语言模型的对齐和超级对齐问题,阐述了其在弱到强泛化(weak-to-strong generalization)、规模化监督(scalable oversight)、精确对齐、黑盒对齐、模型权重外插、自动红队测试等方面的工作。

图片

图|黄民烈作主题报告

清华大学汪玉教授的报告聚焦于大模型时代下软硬件系统方面的关键挑战和发展现状,向参会嘉宾们介绍了面向 AI 2.0 的高能效电路与系统设计方法,包括从算法模型优化到硬件架构设计的一系列软硬件协同优化策略。在报告中,他还简要介绍了 AI 2.0 时代算力生态建设的初步探索,并对未来发展趋势进行展望。

图片

图|汪玉作主题报告

智谱AI 顾晓韬博士,针对 Agent 这一领域,介绍了 Agent 能够感知环境、理解任务、规划步骤、调用工具、执行动作从而完成复杂任务的能力特点,并向大家概述了 GLM 技术团队面向 Agent 能力从评测、优化、多模态能力等方向做的技术尝试和探索。

图片

图|顾晓韬作主题报告

CCF 大模型论坛副主席、华为语音语义首席科学家刘群教授介绍了华为盘古大模型的技术和应用概况,并讲述了盘古语言大模型开发过程中采用的一些核心技术和面临的挑战,具体包括模型架构、训练优化、推理加速、自我提升等方面

图片

图|刘群作主题报告

CCF大模型论坛执行委员、清华大学朱军教授介绍了多模态扩散概率模型在图像、3D 和视频生成的最新进展,重点介绍了 Vidu 视频大模型的三大更新:(1)首发一键生成 32s 长视频;(2)发布视频/文本到音频生成技术,Vidu 生成的视频有声音了;(3)Vidu4D——从 Vidu 生成的视频通过高效重建,生成 4D 的视频。

图片

图|朱军作主题报告

CCF大模型论坛常务会员、哈尔滨工业大学车万翔教授指出现有的思维链研究仍面临两大挑战:(1)缺乏对思维链能力评估的定量指标;(2)缺乏对思维链能力优化的指导。为此,他们引入了一种新颖的“推理粒度”框架来解释思维链技术的机理,并使用该框架改进思维链的推理能力。进一步地,通过在众多模型和任务上的实验,表明了该框架的存在性和合理性。此外,该框架还能够用于解释多种思维链策略的有效性,并能够从两个角度共同指导思维链策略的优化。

图片

图|车万翔作主题报告

CCF大模型论坛执行会员、清华大学翟季冬教授就当前大模型技术不断发展,其对算力的需求持续增大的这一问题展开讨论,并指出当前中国在获取最先进的芯片方面面临巨大的挑战。如何充分发挥国产算力硬件性能,让国产算力易用好用,满足大模型对算力的需求具有重要意义。针对此挑战,他们团队在国产智能算力上开展核心基础软件相关研究。其中,在新一代国产超级计算机上,他们从编译器、算子库、并行加速和负载均衡等方面对大模型进行了深入优化,优化后的训练性能达到 EFLOPS。

图片

图|翟季冬作主题报告

邱锡鹏教授则从大语言模型展现了通用人工智能助手广阔的研究和应用前景,但仍存在一定不足的这一问题出发,向大家介绍了大语言模型 MOSS 2 的研发进展以及关键技术,包括高效模型架构、多模态扩展、工具使用,最终实现可交互、可学习、可解释的世界模型。

图片

图|邱锡鹏作主题报告

此外,本次会议还举办了两场别开生面的 Debates。黄民烈(清华大学)、俞涛(零一万物联合创始人)、顾晓韬(智谱AI 算法研究员)、李伯勋(无问芯穹算法负责人)、曾国洋(面壁智能 CTO)、何家傲(清华大学博士研究生)等来自不同领域的专家学者,就「超级对齐的本质是什么?」、「Maas 是个伪命题吗?」等问题,展开了现场交锋,为广大参会者呈现了一场精彩且深刻的思想探讨。两场 Debates 分别由邱锡鹏教授、CCF大模型论坛主席唐杰教授主持。

「超级对齐的本质是什么」

图片

图|Debate 现场

超级对齐的本质是大模型自我进化、迭代的过程

黄民烈:超级对齐本质上应该是怎么样实现一个大模型的自我进化、自我迭代的学习过程。目前还是非常初步的尝试,很多东西没有做,但需要坚信不移地一步一步从小的尝试开始,逐步实现真正发现模型弱点,并进行自动修复。

超级对齐是机器的自我演化,通过反馈提升自己的方式

文继荣:大家认为,现在的阶段,或可预见的阶段,对齐尤其超级对齐还是非常重要的。我们需要重视大模型的安全性,尤其是模型智力水平越来越高的时候,将来会不会出现失控的风险,所以对齐很重要。

当“超级对齐”这个词出来的时候,大家就要意识到,不再只是简单跟人类价值观对齐了,它现在已经渐渐从关注模型安全,变成了一种通过反馈来提升自己的方式,实现机器自我演化。另外,过度的对齐也可能损害模型的能力和“人性”。

超级对齐的技术预研是非常重要的

俞涛:我们在对齐 GPT-4 水平模型的过程中,主要方法是基于人类专家反馈数据的强化学习。但人类将无法规模化地为下一代模型提供可靠的监督信号,或者给予反馈的效率远远低于 AI 迭代的效率,因此我们目前的对齐技术不能扩展到超级智能。我们需要做好超级对齐的研究和技术预研,包括 weak-to-strong generalization(从弱到强的泛化)、可解释性(可解释性)、scalable oversight(可扩展的监督),为 AGI 的到来做好准备。

超级对齐要实现让语言模型真正为我们服务

刘群:大模型纯粹是从语言文本训练出来的,作为对齐,要把语言空间的东西跟这两个空间对齐起来。我们说安全的时候,更多考虑的是跟意识世界的对齐,跟物理世界的对齐同样重要。我们要对客观世界反馈,不光是安全的问题,在技术上来说是很类似的。研究超级对齐,是让语言模型真正为我们服务,反映真正的客观世界、真正的意识世界,这是它有用的地方。

超级对齐的终极目标具有重要意义

顾晓韬:AI 行业对超级对齐的关注首先说明 AI 技术发展确实到了一个新的高度。超级对齐除了考虑未来超级智能可控性的问题,也包括人类监督到达瓶颈后通过模型与外部环境自主交互等方式获取监督信号去进一步提升智能水平的途径,核心目标还是加深我们对智能本身的理解。

「MaaS是个伪命题吗?」

图片

图|Debate 现场

从云和端的角度去看,MaaS在未来的应用会非常大

李伯勋:如果我们从云的角度来讲,我更希望看到很多国产芯片在这方面做到更高的性价比。从端上看,未来 MaaS 会有很多端上的应用。对硬件改造比较大,例如如何用更低成本提高存储带宽。

MOE是未来大模型发展中比较重要的方向

何家傲:MOE 还是未来比较重要的方向,以目前的硬件架构来讲,MOE 是一种最适合的稀疏结构,MOE 是为了让模型做的很大,如果涉及到多机,比如要用几千、上万张卡去训练,并行策略会带 MOE 负载下面造成更多性能上的影响。

MOE模型效果在逐步提升,值得看好

曾国洋:MOE 的训练技术也是在不断发展的。我们最开始都尝试过 MOE,但是那个时候大家的训练技术也不是特别好,训练出来的 MOE 比真正的大参数量模型有非常多的距离。随着技术越来越提升,我们得到了 MOE 模型效果也会逐渐提升。MOE 是值得看好的,也是有必要做的。

**「CCF大模型安全挑战赛」正式启动

会议进行过程中,清华大学教授黄民烈代表清华大学基础模型研究中心宣布了CCF大模型安全挑战赛的正式启动,该赛事由中国计算机学会(CCF)作为主办单位, 中国计算机学会大模型论坛(CCF FoLM)作为承办单位,携手清华大学基础模型研究中心。

赛事设置了两个赛道任务:「通用的大模型目标劫持」「内容安全检测器的红队攻击」。诚挚邀请各方专家和学者积极参与大模型安全挑战赛,共同探索解决这些安全问题的创新方法和策略,为大模型技术的健康发展保驾护航。

图片

图|黄民烈教授发布 CCF 大模型安全挑战赛

下午会议结束后,根据《CCF 大模型论坛条例》,现场闭门召开了 CCF 大模型论坛 FoLM 常务委员会扩大会议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/26356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024.6.12总结

今天是排毕业照的日子,拍照的时候并没有太过兴奋。后来受到主管说明天就能签offer了,这才喜极而泣。 自从得知自己面试通过后,我是非常高兴,开始幻想着今后的生活。可是,后面在等offer的过程中,我是无比的…

C#开源项目推荐:Watt Toolkit跨平台游戏工具箱支持github网络加速

Watt Toolkit是一个开源跨平台的多功能游戏工具箱,主要专注于增强玩家在Steam平台上的游戏体验及国外网站平台加速。 主要功能 兼容性 用户数据 团队背景 github加速功能 使用方法:用户只需在Watt Toolkit中启用网络加速功能,并选择对Gi…

【文字game】

编写一个完整的文字游戏代码需要一定的时间和复杂的逻辑,特别是如果涉及到用户输入和多个场景的交互。在这里,我可以提供一个简化版的文字游戏示例代码,使用Python语言编写。这个游戏将是一个简单的猜单词游戏,玩家有几次机会猜测…

LogicFlow 学习笔记——3. LogicFlow 基础 节点 Node

节点 Node LogicFlow 内置了一些基础节点,开发者在实际应用场景中,可以基于这些基础节点,定义符合自己业务逻辑的节点。 认识基础节点 LogicFlow是基于svg做的流程图编辑框架,所以我们的节点和连线都是svg基本形状,…

【DPDK学习路径】二、DPDK简介

DPDK(Data Plane Development Kit)是一个框架,用于快速报文处理。 在linux内核提供的报文处理模型中,接收报文的处理路径为:首先由网卡硬件接收,产生硬中断,触发网卡驱动程序注册的中断函数处理,之后产生软…

后继者00

题目链接 后继者 题目描述 注意点 题目中的树是二叉搜索树节点p在二叉搜索树中一定存在 解答思路 本题关键是找到值大于节点p的值的第一个节点,因为本题中的树是二叉搜索树,所以左子树的值始终小于根节点,右子树的值始终大于根节点访问到…

鸿蒙开发:通过startAbilityByType拉起垂类应用

通过startAbilityByType拉起垂类应用 使用场景 开发者可通过特定的业务类型如导航、金融等,调用startAbilityByType接口拉起对应的垂域面板,该面板将展示目标方接入的垂域应用,由用户选择打开指定应用以实现相应的垂类意图。垂域面板为调用…

搭建《七日杀》服务器配置攻略

《七日杀》作为一款集合了第一人称射击、恐怖生存、塔防与角色扮演元素的开放世界僵尸游戏,其服务器配置对于玩家体验至关重要。下面将为大家提供一份关于如何搭建《七日杀》服务器的配置攻略,并在结尾总结使用弹性云服务器的好处。 一、搭建《七日杀》…

【数据结构】双向链表(C语言)

哈喽铁子们,这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识,下面正式开始。 1. 双向链表的结构 注意:这里的“带头”跟前面我们说的“头节点”是两个概念,实际前面的在单链表阶段称呼不严 谨,但是为了老…

Shopee争议本土卖家如何拒绝退款? EasyBoss ERP扫描发货功能来帮忙

Shopee本土店卖家在运营过程中难免会遇到一些售后订单的问题,比如: 明明发货了买家却说没收到! 没发错货,买家却说货不对! 明明发出时商品完好的,但是买家却说是坏的! 根据Shopee的退货政策…

15:HAL----ADC模数转化器

STM32C8T6有2个ADC,ADC1和ADC2 一:介绍 1:简历 ADC(Analog-Digital Converter)模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 12位逐次逼近型ADC,1us转…

Java从放弃到继续放弃

并发编程 为什么需要多线程? 由于硬件的发展,CPU的核数增多,如果仍然使用单线程对CPU资源会造成浪费。同时,单线程也会出现阻塞的问题。所以,选择向多线程转变。 多线程的使用使得程序能够并行计算,提高计…

python学习—合并多个Excel工作簿表格文件

系列文章目录 python学习—合并TXT文本文件 python学习—统计嵌套文件夹内的文件数量并建立索引表格 python学习—查找指定目录下的指定类型文件 python学习—年会不能停,游戏抽签抽奖 python学习—循环语句-控制流 文章目录 系列文章目录功能说明1 准备工作&#…

服务器数据恢复—EMC Isilon存储中被误删的虚拟机数据恢复案例

服务器存储数据恢复环境: EMC Isilon S200集群存储,共三个节点,每节点配置12块SATA硬盘。 服务器存储故障: 工作人员误操作删除虚拟机,虚拟机中数据包括数据库、MP4、AS、TS类型的视频文件等。需要恢复数据的虚拟机通…

力扣第200题“岛屿数量”

关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料 在本篇文章中,我们将详细解读力扣第200题“岛屿数量”。通过学习本篇文章,读者将掌握如何使用深度优先搜索(DFS)和广度优先搜索&…

使用nodejs/exceljs读取、操作、写入excel文件

现在edge已经不支持activexobject了,如果想用javascript操作excel文件,基本上只能用nodejs了。下面的代码就是用nodejs操作excel文件的可用方法,读取每个cell,设置颜色。 // save this content as excel.js file // # npm i exce…

芯片环氧胶可以提供一定的耐盐雾耐腐蚀效果!

芯片环氧胶(或称为环氧树脂胶)在电子封装和保护应用中确实能提供一定的耐盐雾和耐腐蚀效果。 环氧树脂因为其出色的粘接性能、机械强度以及良好的化学稳定性,被广泛用于电子封装领域,尤其是芯片固定和保护。在面对盐雾腐蚀或恶劣…

使用RV1126交叉编译工具链交叉编译opencv,c++代码直接调用VideoCapture 读取摄像头数据

使用RV1126交叉编译工具链交叉编译opencv,rv1126直接调用VideoCapture 读取摄像头数据 前言环境一、ubantu安装二、交叉编译工具安装三、cmake升级四、ffmpeg安装五、opencv安装六、c代码测试(上板运行) 前言 交叉编译是一种将软件在操作系统…

从零开始利用树莓派+扬声器,实现简单的蓝牙音箱,手机连接放歌

背景 树莓派4B自带蓝牙和Wifi, 无需外接 USB dongle; 蓝牙最常见的应用是近距离传输数据,比如蓝牙传文件,蓝牙音箱等。正好家里有个普通的usb供电的便携音箱; 本文用树莓派蓝牙+普通音箱,实现简单的蓝牙音箱。 大致分为三个部分: kernel/driver层的ALSA驱动框架蓝牙音…

43、Flink 自定义窗口触发器代码示例

1、方法说明 1)onElement() 方法在每个元素被加入窗口时调用。 返回 TriggerResult 来决定 trigger 如何应对到达窗口的事件 CONTINUE: 什么也不做 FIRE: 触发计算 PURGE: 清空窗口内的元素 FIRE_AND_PURGE: 触发计算,计算结束后清空窗口内的元素 2&a…