【C++进阶】深入STL之list:模拟实现深入理解List与迭代器

📝个人主页🌹:Eternity._
⏩收录专栏⏪:C++ “ 登神长阶 ”
🤡往期回顾🤡:初步了解 list
🌹🌹期待您的关注 🌹🌹

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

❀STL之list

  • 📒1. list的基本结构
  • 📕2. list的模拟实现
    • 🌈构造函数
    • 🌞析构函数
    • 🌙拷贝构造函数
    • ⭐赋值运算符重载
  • 📚3. list的迭代器
    • 🍂迭代器的基本结构
    • 🍁迭代器的运算符重载
    • 🌸list的迭代器
  • 📙4. list的const迭代器
    • 🎩方法一
    • 🎈方法二
  • 📜5. 统一的方式访问STL容器中的元素
  • 📔6. list与vector的对比
  • 📖7. 总结补充
    • 💧补充:insert和erase的模拟实现
    • 🔥总结


在软件开发中,数据结构和算法的选择与实现是每一个开发者都必须面对的问题。标准模板库(STL)为我们提供了一系列高效且通用的数据结构和算法模板,极大地简化了C++编程中的许多常见任务。然而,了解这些数据结构和算法背后的实现原理,不仅有助于我们更深入地理解STL,还能提升我们的编程能力和解决问题的能力

前言: 在STL中,list是一种双向链表,它支持在序列的任何位置进行快速插入和删除操作。与此同时,迭代器是STL中非常重要的一个概念,它使得我们能够以统一的方式遍历和访问STL容器中的元素。在深入了解STL的过程中,模拟实现list和迭代器无疑是一个极有价值的学习过程。

本节我们将从基本的链表结构开始,逐步构建出完整的list类,并实现相应的迭代器类。


📒1. list的基本结构

在这里插入图片描述
list是一个个带头双向循环链表,这意味着每个元素(通常称为节点)都有两个指针:一个指向前一个元素,另一个指向后一个元素,因此我们需要单独再定义一个类来表示节点结构,每个节点再串联起来构成list

节点定义(示例):

template<class T>
struct list_node
{T _data;list_node<T>* _next;list_node<T>* _prev;list_node(const T& x = T()):_data(x),_next(nullptr),_prev(nullptr){}
};

而在构建list时,我们成员变量只需要一个头节点。

list定义(示例):

template<class T>
struct list
{typedef list_node<T> Node;
public:// 构造函数等可能的其他成员函数... 
private:Node* _head;
};

📕2. list的模拟实现

注意:关于eraseinsert这两个函数的模拟我们依然作为补充放在末尾

🌈构造函数

在拥有一个list我们只需要将它的头节点初始化一下

list构造(示例):

void empty_init()
{_head = new Node;_head->_prev = _head;_head->_next = _head;
}// 无参构造
list()
{empty_init();
}

🌞析构函数

关于析构函数,我们需要的是将所有节点一 一释放就ok啦!

在模拟析构函数之前,不得不先介绍一下clear这个函数,因为clear可以删除出头节点以外的所有节点,我们可以利用这一点帮助我们优化析构函数

list析构(示例):

void clear()
{// 依次清除节点itetator it = begin(); // 稍后会提到迭代器的模拟while(it != end()){it = erase(it);}	
}~list()
{clear(); // 删除出头节点以外的所有节点delete _head; // 单独删除一下头节点_head = nullptr;
}

🌙拷贝构造函数

在学习list时,我们发现list不会因为空间不够而需要扩容,因此在使用模拟list时,不用考虑是否会发生浅拷贝

list拷贝构造函数(示例):

//list(const list<T>& lt)
list(list<T>& lt) // 还未实现const迭代器,先使用常规的
{empty_init();for (auto e : lt){push_back(e); // push_back的实现其实是复用insert,文末有补充}
}

⭐赋值运算符重载

这里我们以让后传统写法和现代写法两种方法

list赋值运算符重载(示例):

// 传统写法
list<T>& operator=(const list<T>& lt)
{clear(); // 先将原来的list清空for (auto e : lt){push_back(e);}return *this;
}// 现代写法
void swap(list<T>& tmp)
{std::swap(_head, tmp._head);
}list<T>& operator=(list<T> lt)
{swap(lt);return *this;
}

在介绍完list基本的结构后,让我们来看看今天的重点:迭代器


📚3. list的迭代器

在我们模拟实现stringvector时,我们认为迭代器就是一个原生指针,但是在list中迭代器底层不是简单的指针,因此我们要独立定义一个新的类


🍂迭代器的基本结构

迭代器定义(示例):

template<class T>
struct __list_iterator
{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;// 构造函数__list_iterator(Node* node):_node(node){}
};

我们将迭代器单独写作一个类,能解决更多的问题,以及避免其他麻烦


🍁迭代器的运算符重载

因为这些函数和前面差不太多,我们简单看看代码,带过了

代码(示例):

self& operator++() // 前置++
{_node = _node->_next;return *this;
}self& operator--() // 前置--
{_node = _node->_prev;return *this;
}self operator++(int) // 后置++
{self tmp(*this);_node = _node->_next;return &tmp;
}self operator--(int) // 后置--
{self tmp(*this);_node = _node->_prev;return &tmp;
}bool operator!=(const self& tmp)
{return _node != tmp._node; 
}bool operator-=(const self& tmp)
{return _node -= tmp._node;
}

而今天着重要强调以下两个运算符重载,因为const非const下这两个是有区别的:

//可读写
T& operator*()
{return _node->_data;
}
//可读写
T* operator->()
{return &_node->_data;
}
// it.operator->()-> 编译器帮我们省略了一个箭头->  it->

在定义完迭代器类之后,我们可以实现begin()end()来实现list范围for


🌸list的迭代器

迭代器代码(示例):

template<class T>
struct list
{typedef list_node<T> Node;
public:typedef __list_iterator<T> iterator;iterator begin(){//return iterator(_head->_next); // 匿名对象return _head->next;}iterator end(){//return iterator(_head); // 匿名对象return _head;}
private:Node* _head;
};

当然我们这里还没有实现const迭代器很多需要调用const对象的函数还无法使用,那么接下来让我们来模拟实现const迭代器,见证新的神奇


📙4. list的const迭代器

关于这个list的const迭代器其实有两种写法,常规的写法就是在定义一个新的const迭代器的类,虽然这样可以解决问题,但是会造成代码的冗余,让操作繁琐。而另一种方法就是在原有的迭代器类上进行修改,让它能具有两个迭代器都能使用的特点

🎩方法一

const迭代器实现(示例):

template<class T>
struct __list_const_iterator
{typedef list_node<T> Node;typedef __list_const_iterator<T> self;Node* _node;// 构造函数__list_const_iterator(Node* node):_node(node){}//可读不可写const T& operator*(){return _node->_data;}//可读不可写const T* operator->(){return &_node->_data;}// 可能的其他成员函数... 
};

🎈方法二

如果我们将这两个差异的内容单独表示出来归于模板中,因为在const与非const之间,无非就是T&,T*上能否读写的区别,不影响其他的函数实现,因此我们可以在模板上加上两个参数

模板参数实例化类型
RefT&,(const 变量时) const T&
PtrT*,(const 变量时) const T*

const迭代器实现(示例):

// 用一个模板来解决 const与非const
template<class T, class Ref, class Ptr>
struct __list_iterator
{typedef list_node<T> Node;// 会实例化成最匹配的typedef __list_iterator<T, Ref, Ptr> self;Node* _node;// 构造函数__list_iterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}// 可能的其他成员函数... 
};
template<class T>
struct list
{typedef list_node<T> Node;
public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_const_iterator<T, const T&, const T*>  const_iterator;iterator begin(){return _head->next;}iterator end(){return _head;}const_iterator begin() const{return _head->next;}const_iterator end() const{return _head;}
private:Node* _head;
};

关于list的模拟实现我们就讲到这里,让我看看如何以统一的方式遍历和访问STL容器中的元素


📜5. 统一的方式访问STL容器中的元素

在完成对list的模拟实现后,我们试着用来遍历和访问list中的元素

代码实现(示例):

void print_list(const list<int>& lt)
{// list<T>没有实例化话,就并不能去遍历寻找// 编译器不知道 list<T>::const_iterator 是内嵌类型,还是静态成员变量list<int>::const_iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";++it;}
}
void test_list()
{list<int> lt;lt.push_back(1);lt.push_back(2);print_list(lt);cout << endl;
}

编译器不知道 list::const_iterator 是内嵌类型,还是静态成员变量,但是如果实例化成int后,有需要一个成员是string的列表这时我们有犯难了,这时我们就要用到typenametypename 就是告诉编译器,这是一个类型,等list实例化之后再去取

代码实现(示例):

template<typename T>
void print_list(const list<T>& lt)
{......// typename 就是告诉编译器,这是一个类型,等list实例化之后再去取typename list<T>::const_iterator it = lt.begin();......
}

但是更离谱的来了,这时又有人要求我们打印vector的值,容器都换了我们该怎么办呢?这时模板的作用又双体现出来了,这也体现了模板的本质,让我们能省的活交给编译器完成

代码实现(示例):

// 这里直接搞了一个Container来适配容器
template<typename Container>
void print_container(const Container& con)
{typename  Container::const_iterator it = con.begin();while (it != con.end()){cout << *it << " ";++it;}
}

它使得我们能够以统一的方式遍历和访问STL容器中的元素


📔6. list与vector的对比

我们可以发现list与之前学的竟然有那么多的差异,我们结合上节学的vector来分析一下它们的差异:vectorlist都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭 代 器插入删除时触发条件会导致迭代器失效删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

📖7. 总结补充

💧补充:insert和erase的模拟实现

代码实现(示例):

// insert会返回插入位置的一个迭代器
iterator insert(iterator pos, const T& x)
{Node* newnode = new Node(x);Node* cur = pos._node;Node* prev = cur->_prev;prev->_next = newnode;newnode->_prev = prev;cur->_prev = newnode;newnode->_next = cur;return iterator(newnode); // 匿名对象
}
// erase会返回删除位置的next节点的迭代器
iterator erase(iterator pos)
{Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;prev->_next = next->_prev;next->_prev = prev->_next;return iterator(next); // 匿名对象
}
// erase和insert的复用
void push_back(const T& x) // 尾插
{insert(end(), x);
}
void push_front(const T& x) // 头插
{insert(begin(), x);
}
void pop_back() // 尾删
{erase(end());
}
void pop_front() // 头删
{erase(begin());
}

🔥总结

通过本次对STL中list和迭代器模拟实现的探索,我们深入了解了双向链表的基本结构、操作原理以及迭代器在遍历和访问链表元素中的重要作用。模拟实现的过程不仅让我们对STL中的list容器有了更深刻的理解,也锻炼了我们的编程能力和解决问题的能力

  • 在模拟实现的过程中,我们学习了如何设计并实现一个双向链表结构,包括节点的定义、链表的插入、删除和遍历等操作。同时,我们也掌握了迭代器的基本概念和实现方法,理解了如何通过迭代器来统一访问和遍历不同的容器类型。
  • 模拟实现STL中的list和迭代器是一个既有趣又富有挑战性的过程。它让我们更加深入地理解了数据结构和算法的基本原理,也为我们日后在实际项目中高效应用STL容器打下了坚实的基础。

最后,感谢大家的耐心阅读和学习。希望本次介绍能够为大家在STL学习和编程实践中提供一些帮助和启示。在未来的学习和工作中,让我们继续深入探索STL的奥秘,不断提升自己的编程能力和解决问题的能力
在这里插入图片描述

谢谢大家支持本篇到这里就结束了,祝大家天天开心!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24471.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

源码、反码和补码

对于有符号数而言&#xff0c;原码就是一个数的二进制表示。二进制的最高位是符号位&#xff0c;0 表示正数&#xff0c;1 表示负数。 计算机用数的原码进行显示&#xff0c;数的计算和存储是用补码进行的。 正数的原码&#xff0c;反码和补码都一样&#xff0c;即正数三码合…

nomachine使用记录以及录包

录包命令&#xff1a; rosbag record 话题名字&#xff08;可以是原相机话题和执行程序的话题&#xff09;rosbag play 包名&#xff08;可以离线播放包的数据&#xff09; rqt_image_view 话题可视化

FileZilla:不安全的服务器,不支持 FTP over TLS 原因与解决方法

今天在用FileZilla Client连接某个主机的FTP的时候&#xff0c;主机地址、账号、密码、端口确定百分之百正确的情况下&#xff0c;结果报错如下&#xff1a; 状态: 正在解析 x.x.x 的地址 状态: 正在连接 x.x.x.x:21... 状态: 连接建立&#xff0c;等待欢迎消息... 状态: 不安全…

RHEL - 订阅、注册系统和 Yum Repository(新版界面)

《OpenShift / RHEL / DevSecOps 汇总目录》 演示环境说明 本文需要有 redhat.com 账号以及包含 RHEL 的有效订阅。 演示环境使用了通过 minimal 方式安装的 RHEL 7.6 环境&#xff0c;RHEL 可以访问互联网。 红帽网站 access.redhat.com 针对新用户提供了新版界面&#xff0…

建构信任基石:揭秘Web3的去中心化信任体系

在传统的互联网时代&#xff0c;信任往往建立在中心化的机构和第三方平台之上&#xff0c;而这种中心化的信任体系往往面临着数据泄露、信息滥用等问题。然而&#xff0c;随着区块链技术的发展&#xff0c;Web3时代正在向我们展示一种全新的信任体系&#xff0c;即去中心化的信…

离散数学---树

目录 1.基本概念及其相关运用 2.生成树 3.有向树 4.最优树 5.前缀码 1.基本概念及其相关运用 &#xff08;1&#xff09;无向树&#xff1a;连通而且没有回路的无向图就是无向树&#xff1b; 森林就是有多个连通分支&#xff0c;每个连通分支都是树的无连通的无向图&…

给Mac添加右键菜单「使用 VSCode 打开」的方法

用 macOS 系统的苹果电脑用户都知道&#xff0c;macOS 某些地方确实没 Windows 方便&#xff0c;比如右键菜单&#xff0c;没有复制粘贴之类的菜单&#xff0c;刚开始还有点使用不方便&#xff0c;今天我介绍两种方法来实现一个用右键通过 VSCode 打开文件和文件夹的方法&#…

day40--Redis(二)实战篇

实战篇Redis 开篇导读 亲爱的小伙伴们大家好&#xff0c;马上咱们就开始实战篇的内容了&#xff0c;相信通过本章的学习&#xff0c;小伙伴们就能理解各种redis的使用啦&#xff0c;接下来咱们来一起看看实战篇我们要学习一些什么样的内容 短信登录 这一块我们会使用redis共…

php探针代码怎么写

创建php文件并输入代码&#xff0c;访问文件查看php版本、环境和系统配置信息&#xff0c;可使用ini_set()函数定制输出&#xff0c;但注意在生产环境中使用时要注重安全&#xff0c;因为它会泄露敏感信息。 PHP探针代码撰写指南 PHP探针代码是一种脚本&#xff0c;可提供关于…

Qt/C++音视频开发76-获取本地有哪些摄像头名称/ffmpeg内置函数方式

一、前言 上一篇文章是写的用Qt的内置函数方式获取本地摄像头名称集合&#xff0c;但是有几个缺点&#xff0c;比如要求Qt5&#xff0c;或者至少要求安装了多媒体组件multimedia&#xff0c;如果没有安装呢&#xff0c;或者安装的是个空的呢&#xff0c;比如很多嵌入式板子&am…

C语言小例程10/100

题目&#xff1a;要求输出国际象棋棋盘。 程序分析&#xff1a;国际象棋棋盘由64个黑白相间的格子组成&#xff0c;分为8行*8列。用i控制行&#xff0c;j来控制列&#xff0c;根据ij的和的变化来控制输出黑方格&#xff0c;还是白方格。 #include<stdio.h>int main() {…

SAP 服务提供者 (Services Provider)接口测试笔记

文章目录 SAP 服务提供者 &#xff08;Services Provider&#xff09;接口测试笔记设置Content-Type授权SAP接口测试-SoapUI参数配置 SAP 服务提供者 &#xff08;Services Provider&#xff09;接口测试笔记 现在我在SAP里面公布了一些查询接口&#xff0c;现在就是要用SoapU…

【AIGC+CAD】革新建筑、室内设计与建模领域的GenAI产品

一、产品定位 Augrade,一款专为建筑、室内设计和建模行业打造的AI CAD自动化工具。它凭借先进的AI技术,将2D蓝图迅速转化为精确的3D CAD模型,同时提供设计、成本分析的自动化以及全面的文档生成服务。Augrade致力于简化设计流程,确保技术可行性,并促进跨团队、跨工具的协…

Java Web学习笔记19——Ajax介绍

Ajax: 概念&#xff1a;Asynchronous JavaScript And XML 异步的JavaScript和XML。 作用&#xff1a; 1&#xff09;数据交换&#xff1a;通过Ajax可以给服务器发送请求&#xff0c;并获得服务器的响应数据。 2&#xff09;异步交互&#xff1a;可以在不重新加载页面的情况…

Hadoop+Spark大数据技术 实验11 Spark 图

17周期末考试 重点从第五章 scala语言开始 比如&#xff1a;映射&#xff08;匿名函数&#xff09; 11.3.1创建属性图 import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD //创建一个顶点集的RDD val users: RDD[(VertexId ,(String,String))] sc.paralle…

基于思通数科大模型的设备隐患智能检测:图像处理与声音分析的融合应用

在现代工业生产中&#xff0c;设备的稳定运行对保障生产效率和产品质量至关重要。然而&#xff0c;设备的老化、磨损以及异常状态的检测往往需要大量的人力和物力。思通数科大模型结合图像处理技术和声音分析技术&#xff0c;为设备隐患检测提供了一种自动化、高效的解决方案。…

Docker 管理 | 代理配置、内网共享和 Harbor 部署

唠唠闲话 在现代软件开发和运维中&#xff0c;容器技术已经成为构建、部署和管理应用程序的标准工具。然而&#xff0c;在实际操作中&#xff0c;我们常常需要面对一些常见的挑战&#xff0c;如容器访问外部资源的代理配置、内网环境下的镜像共享以及企业级镜像管理。 本教程…

关键字、保留字、标识符

关键字 关键字是被 Java 赋予了特定含义的英文单词。 关键字的字母全部小写。 保留字 现有的 Java 版本尚未使用&#xff0c;但是以后版本可能会作为关键字使用。自己命名标识符时需要避免使用这些保留字。 保留字有&#xff1a;byValue, cast, future, generic, inner, op…

Spring Boot整合WebSocket和Redis实现直播间在线人数统计功能

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…

高精度加法的实现

这是C算法基础-基础算法专栏的第七篇文章&#xff0c;专栏详情请见此处。 引入 在C语言中&#xff0c;int的可存储数据范围是-2147483648~2147483647&#xff0c;long long的可存储数据范围是-9223372036854775808~9223372036854775807&#xff0c;但是如果一些数据比long long…