【大模型】Ollama+open-webui/Anything LLM部署本地大模型构建RAG个人知识库教程(Mac)

目录

一、Ollama是什么?

二、如何在Mac上安装Ollama

1. 准备工作

2. 下载并安装Ollama

3. 运行Ollama

4. 安装和配置大型语言模型

5. 使用Ollama

三、安装open-webui

1. 准备工作

2. Open WebUI ⭐的主要特点

3. Docker安装OpenWebUI,拉去太慢可以使用手动安装

4. 配置本地大模型LLaMA2-7B

5. 验证配置

四、使用Ollama + AnythingLLM构建类ChatGPT本地问答机器人系

学习目标

1. 下载AnythingLLM

2. 安装AnythingLLM

3. 配置AnythingLLM

3.1 选择LLM、嵌入模型和向量数据库

3.2 设置环境变量(如果需要)

3.3 权限管理(如果需要)

4. 构建知识库

5. 开始使用

6. 自定义集成(如果需要)

7. 监控和反馈

8. 注意事项

9. 额外信息

参考文章


一、Ollama是什么?

Ollama是一个功能强大的开源框架,旨在简化在Docker容器中部署和管理大型语言模型(LLM)的过程。以下是关于Ollama的详细介绍:

  1. 定义与功能
    • Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型。
    • 通过简单的安装指令,用户可以执行一条命令就在本地运行开源大型语言模型,如Llama 2。
    • Ollama极大地简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。
  2. 特点与优势
    • 功能齐全:Ollama将模型权重、配置和数据捆绑到一个包中,定义成Modelfile。
    • 优化设置与配置:它优化了设置和配置细节,包括GPU使用情况。
    • 易用性:用户无需深入了解复杂的部署和管理流程,只需简单的安装和配置即可使用。
    • 支持热加载:用户无需重新启动即可切换不同的模型。
  3. 支持的平台与模型
    • Ollama支持在Mac和Linux平台上运行。
    • 它支持运行多种开源大型语言模型,如Llama 2。
  4. API与界面
    • Ollama提供了类似OpenAI的API接口和聊天界面,方便用户部署和使用最新版本的GPT模型。
  5. 安装与部署
    • Ollama的安装过程被极大地简化,并提供了多种选择,包括Docker镜像。

综上所述,Ollama是一个为在本地运行大型语言模型而设计的强大、易用、功能齐全的开源框架。它通过优化设置和配置,简化了在Docker容器中部署和管理LLM的过程,使得用户能够快速、方便地在本地运行大型语言模型。

二、如何在Mac上安装Ollama

在Mac上安装Ollama的步骤如下,结合了参考文章中的信息,并进行了适当的总结和归纳:

1. 准备工作

  • 确认系统兼容性:Ollama支持在Mac上运行,但请确保您的Mac满足运行大型语言模型所需的最低系统要求。
  • 检查存储空间:安装和运行Ollama以及大型语言模型可能需要较大的磁盘空间。请确保您的Mac有足够的存储空间。

2. 下载并安装Ollama

  • 访问Ollama官网:前往Ollama的官方网站(如:https://ollama.com/)下载适用于Mac的安装包。
  • 下载安装包:在官网找到适用于Mac的下载链接,下载Ollama的安装包。
  • 安装Ollama:双击下载的安装包,按照提示完成安装过程。

3. 运行Ollama

  • 打开终端:在Mac上打开终端(Terminal)。
  • 运行命令:在终端中,输入相应的命令来启动和运行Ollama。例如,使用ollama pull llama3命令来拉取并安装Llama 3模型(请注意,这只是一个示例命令,具体命令可能因Ollama的版本和您的需求而有所不同)。
  • 下载llama2地址: llama2
  • 下载命令:ollama run llama2:7b

4. 安装和配置大型语言模型

  • 选择模型:根据您的需求选择合适的大型语言模型。Ollama支持多种开源大型语言模型,如Llama 2、Llama 3等。
  • 安装模型:使用Ollama提供的命令来安装所选的模型。例如,使用ollama pull llama3命令来安装Llama 3模型。
  • 配置模型:根据模型的文档和说明,进行必要的配置和设置。这可能包括设置模型的参数、配置GPU使用情况等。

5. 使用Ollama

  • 启动服务:在成功安装和配置模型后,您可以使用Ollama提供的命令或API来启动和运行模型服务。
  • 访问和使用:通过Ollama提供的Web界面或API接口,您可以访问和使用已部署的大型语言模型进行各种任务,如文本生成、问答等。
  • API调用

    curl http://localhost:11434/api/generate -d '{

    "model": "llama2:7B",

    "prompt":"Why is the sky blue?"

    }'

  • 回答问题时CPU100%,MAC M1 8G内存

请注意,以上步骤和命令可能因Ollama的版本和您的具体需求而有所不同。建议您参考Ollama的官方文档和社区资源,以获取最准确和最新的安装和使用指南。

三、安装open-webui

1. 准备工作

  1. 安装Docker环境:确保你的系统上已经安装了Docker Desktop。你可以从Docker官网下载并安装适合你操作系统的Docker Desktop版本。
  2. 配置Docker以支持GPU(可选):如果你的本地有GPU,并且希望利用GPU加速大模型效果,你需要在Docker Desktop中配置GPU支持。这通常涉及到在Docker Desktop的设置中启用GPU支持,并安装相应的驱动程序和软件。
  3. 可参考文章:Macbook m1安装docker详细教程_mac m1安装docker-CSDN博客

2. Open WebUI ⭐的主要特点

GitHub - open-webui/open-webui: User-friendly WebUI for LLMs (Formerly Ollama WebUI)

  • 🚀 轻松设置:使用 Docker 或 Kubernetes(kubectl、kustomize 或 helm)无缝安装,提供无忧体验,同时支持标记映像和标记映像。:ollama:cuda

  • 🤝 Ollama/OpenAI API 集成:轻松集成兼容 OpenAI 的 API,与 Ollama 模型进行多功能对话。自定义 OpenAI API URL 以链接 LMStudio、GroqCloud、Mistral、OpenRouter 等

  • 🧩 Pipelines、Open WebUI 插件支持:使用 Pipelines 插件框架将自定义逻辑和 Python 库无缝集成到 Open WebUI 中。启动您的 Pipelines 实例,将 OpenAI URL 设置为 Pipelines URL,探索无限可能。示例包括函数调用、控制访问的用户速率限制、使用 Langfuse 等工具进行使用情况监控、使用 LibreTranslate 提供多语言支持的实时翻译、有害消息过滤等等。

  • 📱 响应式设计:在台式电脑、笔记本电脑和移动设备上享受无缝体验。

  • 📱 适用于移动设备的渐进式 Web 应用程序 (PWA):使用我们的 PWA 在您的移动设备上享受类似本机应用程序的体验,提供对 localhost 的离线访问和无缝的用户界面。

  • ✒️🔢 完整的 Markdown 和 LaTeX 支持:通过全面的 Markdown 和 LaTeX 功能提升您的 LLM 体验,以实现丰富的交互。

  • 🛠️ 模型生成器:通过 Web UI 轻松创建 Ollama 模型。通过 Open WebUI 社区集成,轻松创建和添加自定义角色/代理、自定义聊天元素和导入模型。

  • 📚 本地 RAG 集成:通过突破性的检索增强生成 (RAG) 支持,深入了解聊天交互的未来。此功能将文档交互无缝集成到您的聊天体验中。您可以将文档直接加载到聊天中或将文件添加到文档库中,在查询之前使用命令轻松访问它们。#

  • 🔍 RAG 的 Web 搜索:使用 、 、 、 和 等提供程序执行 Web 搜索,并将结果直接注入到聊天体验中。SearXNGGoogle PSEBrave Searchserpstackserper

  • 🌐 Web 浏览功能:使用后跟 URL 的命令将网站无缝集成到您的聊天体验中。此功能允许您将 Web 内容直接合并到您的对话中,从而增强交互的丰富性和深度。#

  • 🎨 图像生成集成:使用 AUTOMATIC1111 API 或 ComfyUI(本地)和 OpenAI 的 DALL-E(外部)等选项无缝整合图像生成功能,通过动态视觉内容丰富您的聊天体验。

  • ⚙️ 许多模型对话:毫不费力地同时与各种模型互动,利用它们的独特优势来获得最佳响应。通过并行利用各种模型来增强您的体验。

  • 🔐 基于角色的访问控制 (RBAC):确保使用受限权限进行安全访问;只有经过授权的个人才能访问您的 Ollama,并且为管理员保留独家模型创建/拉取权限。

  • 🌐🌍 多语言支持:通过我们的国际化 (i18n) 支持,以您的首选语言体验 Open WebUI。加入我们,扩展我们支持的语言!我们正在积极寻找贡献者!

  • 🌟 持续更新:我们致力于通过定期更新、修复和新功能来改进 Open WebUI。

想了解更多关于Open WebUI的功能吗?查看我们的 Open WebUI 文档,了解全面概述!

3. Docker安装OpenWebUI

拉取Open-WebUI镜像:使用Docker命令从GitHub Container Registry拉取Open-WebUI的镜像。例如,你可以运行以下命令来拉取最新的Open-WebUI镜像:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

 下载太慢,需要配置docker国内镜像仓库,参考这篇文章:

MacOS上配置docker国内镜像仓库地址_mac docker配置镜像源-CSDN博客

如果163也很慢,建议配置阿里云镜像地址,需要登陆阿里云 不过配置发现更慢!手动下载了

最后只能用魔法解决了

4. 安装完成

4.1 本地登陆

登陆地址 http://localhost:3000/  注册账号登陆

4.2 选择模型

4.3 聊天

4.4 配置文本嵌入模型

4.5 上传PDF文档

4.6 关联文档,回答问题

4. 配置本地大模型LLaMA2-7B

  1. 下载LLaMA2-7B模型:你需要从适当的来源(如Hugging Face的模型仓库)下载LLaMA2-7B模型的文件。由于模型文件可能非常大,下载可能需要一些时间。确保你有足够的存储空间来存储这些文件。
  2. 配置Open-WebUI以使用LLaMA2-7B模型:Open-WebUI允许你通过配置文件或环境变量来指定要使用的模型。你需要根据你的Open-WebUI版本和配置方式,将LLaMA2-7B模型的路径或位置配置到Open-WebUI中。具体的配置方法可能因Open-WebUI版本而异,请参考Open-WebUI的官方文档或GitHub仓库中的说明进行配置。
  3. 重启Open-WebUI容器:在配置完Open-WebUI以使用LLaMA2-7B模型后,你需要重启Open-WebUI容器以使配置生效。你可以使用Docker命令来停止并重新启动容器,或者如果Open-WebUI支持热重载配置,你也可以尝试重新加载配置而不必重启容器。

5. 验证配置

  1. 访问Open-WebUI界面:在配置完成后,你可以通过浏览器访问本地的3000端口来访问Open-WebUI的界面。在界面上,你应该能够看到已经配置好的LLaMA2-7B模型,并可以开始使用它进行对话或其他任务。
  2. 测试LLaMA2-7B模型:在Open-WebUI界面中,你可以尝试与LLaMA2-7B模型进行对话或执行其他任务来验证配置是否正确。如果一切正常,你应该能够看到LLaMA2-7B模型对你的输入做出合理的响应。

四、使用Ollama + AnythingLLM构建类ChatGPT本地问答机器人系

学习目标

  • 使用开源软件Ollama+AnythingLLM构建本地类ChatGPT问答机器人系统
  • 熟悉和了解基于LLM的本地RAG知识库搭建原理和逻辑,替换符合国内的LLM工具
  • 学会安装、配置、使用问答系统,找出符合企业私有化客服(对内)的产品规划逻辑
  • 对比和发现问题,寻找优劣点

当在MAC上安装AnythingLLM时,以下是更详细的步骤,结合了参考文章中的信息:

1. 下载AnythingLLM

  • 访问AnythingLLM的官方网站:Download AnythingLLM for Desktop(注意:链接可能随时间而变化,请以最新信息为准)。
  • 在下载页面选择适用于MacOS的桌面版dmg文件,点击下载。

2. 安装AnythingLLM

  • 下载完成后,找到下载的dmg文件,双击打开。
  • 跟随安装向导的指示,完成AnythingLLM的安装过程。
  • 安装完成后,打开AnythingLLM应用。初次启动可能需要一些时间进行初始化操作。

3. 配置AnythingLLM

3.1 步骤说明

3.2 选择LLM、嵌入模型和向量数据库
  • 在AnythingLLM应用中,根据需求选择或下载适当的大语言模型(LLM)、嵌入模型和向量数据库。
    • LLM:AnythingLLM支持多种LLM,包括但不限于OpenAI的GPT系列、Gemini、Mistral等。
    • 嵌入模型:可以选择内置的嵌入模型或下载其他模型,如OpenAI、LocalAi、Ollama等提供的嵌入模型。
      • nomic-embed-text
    • 向量数据库:默认使用内置的LanceDB,但也可以选择其他如Chroma、Milvus、Pinecone等。
3.3 设置环境变量(如果需要)
  • 根据AnythingLLM的文档说明,如有需要,设置所需的环境变量,例如OLLAMA_MODELS
3.4 权限管理(如果需要)
  • 如果是企业级应用,可以设置多用户并进行权限管理,确保数据的安全性。

4. 构建知识库

  • 在AnythingLLM中,通过“选择知识”按钮上传文档或给定知识文件链接(支持PDF、TXT、DOCX等文档格式)。
  • 将文档通过嵌入模型转化为向量,并保存到向量数据库中。这个过程可能需要一些时间,具体取决于文档的大小和系统的性能。
  •  

5. 开始使用

  • 配置完成后,就可以在AnythingLLM中进行基于检索增强生成(RAG)的聊天或问答了。
  • 可以创建自己的工作区(workspace),设置不同的配置,并开始与LLM进行交互。

6. 自定义集成(如果需要)

  • 如果需要,可以使用AnythingLLM的开发者API进行自定义集成,以满足特定的业务需求。

7. 监控和反馈

  • 利用AnythingLLM的遥测功能来监控应用的使用情况。
  • 如果遇到问题或需要改进,可以通过创建issue或PR来提供反馈。

8. 注意事项

  • 定期检查并更新AnythingLLM和相关的模型、嵌入模型、向量数据库,以获取最佳的性能和安全性。
  • 注意保护个人隐私和知识产权,确保上传的文档内容合法合规。

9. 额外信息

  • AnythingLLM是一个全栈应用程序,允许用户将任何文档、资源或内容转化为任何LLM在聊天过程中可以用作参考的上下文。
  • 该应用程序支持多种LLM、嵌入器和向量数据库,并提供了多用户支持和权限管理功能。
  • 通过AnythingLLM,用户可以在本地或云端搭建个性化的聊天机器人系统,无需复杂设置。

参考文章

Ollama-0001-安装

Ollama:本地大模型运行指南

ollama+open-webui,本地部署自己的大模型_ollama的webui如何部署-CSDN博客

Macbook m1安装docker详细教程_mac m1安装docker-CSDN博客

MacOS上配置docker国内镜像仓库地址_mac docker配置镜像源-CSDN博客

第九期: 使用Ollama + AnythingLLM构建类ChatGPT本地问答机器人系统 - 知乎 (zhihu.com)

AI小白使用Macbook Pro安装llama3与langchain初体验_mac安装llama3-CSDN博客

EP4 Ollama + AnythingLLM 解读本地文档 构建私有知识库_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24096.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大学信息资源管理试题及答案,分享几个实用搜题和学习工具 #职场发展#微信

人工智能技术的发展正逐渐改变着我们的生活,学习如何运用这些技术将成为大学生的必备素养。 1.彩虹搜题 这是个微信公众号 算法持续优化,提升搜题效果。每一次搜索都更精准,答案更有价值。 下方附上一些测试的试题及答案 1、在SpringMVC配…

k8s-pod参数详解

目录 概述创建Pod编写一个简单的Pod添加常用参数为Pod的容器分配资源网络相关Pod健康检查启动探针存活探针就绪探针 作用整个Pod参数配置创建docker-registry 卷挂载 结束 概述 k8s中的pod参数详解。官方文档   版本 k8s 1.27.x 、busybox:stable-musl、nginx:stable-alpine3…

【RabbitMQ基础】-RabbitMQ:初识MQ[1]

简介 RabbitMQ (高性能的异步通讯组件) RabbitMQ是一个开源的消息队列中间件,它实现了高级消息队列协议(AMQP)标准。它是一种可靠、可扩展、灵活和可插拔的解决方案,用于处理异步消息传递和事件驱动系统。…

《广告数据定量分析》读书笔记之统计原理2

3.相关分析:描述的是两个数值变量间关系的强度。(两个数值型变量之间的关系) (1)图表表示:散点图 (2)衡量关系强度指标:相关系数r。 (r的取值为-1到 1&…

.net 下的身份认证与授权的实现

背景 任何一个系统,都需要对于底层访问的页面和接口进行安全的处理,其中核心就是认证和授权。 另外一个问题就是在实际编程过程中,我们的代码有不同的模式,不同的分层或者在不同的项目之中,如何在不同的地方取得用户…

Python画图(多图展示在一个平面)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

各平台对象存储

一、阿里云对象存储 官方文档:https://help.aliyun.com/zh/oss/getting-started/getting-started-with-oss?spma2c4g.11186623.0.0.299a646c6nWWcW 1.引入maven 官网:https://help.aliyun.com/zh/oss/developer-reference/java-installation?spma2c…

小白学linux | 使用正则表达式审计ssh登录ip地址

Ubuntu /var/log/auth.log记录了所有与身份验证相关的事件,包括SSH登录尝试 grep -i "failed password" /var/log/auth.log | \awk {if($11 ~/^[0-9]\.[0-9]\.[0-9]\.[0-9]$/)print $11 ; else print $13} | \uniq -c | sort -nr -k1 RedHat系发行版 /va…

AI大模型,普通人如何抓到红利?AI+产品经理还有哪些机会

前言 随着人工智能技术的飞速发展,AI大模型正逐渐渗透到我们的工作和生活中,为普通人带来了前所未有的便利和机遇。然而,如何有效地抓住这些红利,让AI大模型为我们所用,成为了许多人关注的焦点。 对于普通人而言&…

Threejs-04、物体的缩放与旋转

1、物体的缩放 因为物体的scale属性是vector对象,因此按照vector的属性和方法,设置x/y/z轴的缩放大小 //例如设置x轴放大3倍、y轴方向放大2倍、z轴方向不变 cube.scale.set(3, 2, 1); //单独设置某个轴的缩放 cube.scale.x = 32、物体设置旋转 因为的旋转通过设置rotation属性…

国自然和毕业论文的流程图用这个格式导入Word可无限放大

AI编辑的图片导出EMF格式可直接插入Word和PPT中 可无限放大 不推荐WMF,导入word可能会发生格式变化 还可在PPT中去除分组再编辑

ceph radosgw 原有zone placement信息丢失数据恢复

概述 近期遇到一个故障环境,因为某些原因,导致集群原有zone、zonegroup等信息丢失(osd,pool等状态均健康)。原有桶和数据无法访问,经过一些列fix后修复, 记录过程 恢复realm和pool相关信息 重…

我找到了全网最低价买服务器的 bug !!!

拍断大腿 周五,放松一下,给大家分享下我最近的事儿,以及带大家薅个(可能会有)的羊毛。 上个月,家里买了 Apple TV(可理解为苹果的电视盒子)装了 infuse(一个在电视盒子上…

宝兰德应用服务器软件通过保险业信息技术应用创新攻关实验室产品适配测试认证

近期,宝兰德中间件核心产品「应用服务器软件 V9.5.5」(以下简称:应用服务器软件)顺利通过了保险业信息技术应用创新攻关实验室产品适配测试。标志着宝兰德应用服务器软件符合信息技术产品适配要求,能够全面支持金融保险…

读python、pytorch代码时代码函数记录

在读取pytorch训练代码时,作为小白的自己,总是碰到一些没用过的函数和语法,这里记录学习下: os.sep:跨平台路径分隔符,在Python中,os模块提供了一些与操作系统交互的功能,其中os.sep是一个非常重要的属性。…

解决CentOS 7无法识别ntfs的问题

解决CentOS 7无法识别ntfs的问题 方式一: Centos默认不支持ntfs文件格式,直接在Centos7上插U盘或移动硬盘无法识别,安装 ntfs-3g即可: # yum install epel-release -y # yum install ntfs-3g -y[rootbogon ~]# rpm -qa | grep nt…

由于找不到 XXX.dll,无法继续执行代码。重新安装程序可能会解决此问题——解决方案

由于找不到 XXX.dll,无法继续执行代码。重新安装程序可能会解决此问题——解决方案 一、问题描述 之前项目都是在Ubuntu操作系统下完成,进行的很顺利。由于我没有Linux物理机,每次都要打开虚拟机感觉挺麻烦的,我就想着把在Linux上…

中国版Wayve决战端到端,等待数据的大力出奇迹

作者 |王博 编辑 |德新 「人工智能的定律只有一个,就是规模定律(Scaling Law),大力出奇迹。端到端是描述方式,更应该去考虑如何去生产更多的自动驾驶合适的数据,来喂养更大更合适的模型,取得更…

C语言野指针、规避野指针、assert宏断言

目录 a.野指针成因 1.指针未初始化 2.指针越界访问 3.指针指向的空间释放 b.规避野指针 1.指针初始化 2.小心指针越界 3.指针变量不再使用时,及时置NULL,指针使用之前检查有效性 4.避免返回局部变量的地址 c.assert宏断言的使用 概念&#xff1…

【MySQL】SQL通用语法

【MySQL】SQL通用语法 SQL是结构化查询语言(Structured Query Language)的缩写,是一种专门用来管理和操作关系型数据库的标准化语言。SQL能够实现数据库的创建、查询、更新和删除操作,以及对数据进行存储、检索和管理。通过SQL语句…