使用Ollama+OpenWebUI部署和使用Phi-3微软AI大模型完整指南

  

🏡作者主页: 点击! 

🤖AI大模型部署与应用专栏:点击!

⏰️创作时间:2024年6月6日23点50分

🀄️文章质量:96分


欢迎来到Phi-3模型的奇妙世界!Phi-3是由微软 AI研究院开发的一系列小型语言模型,它们以小巧的体型、强大的性能和开源的特点,在自然语言处理领域掀起了革命性的浪潮。

本指南将带领您一步步地使用Ollama和OpenWebUI部署和使用Phi-3模型,让您轻松解锁模型的无限潜能。无论您是经验丰富的开发人员还是初学者,都能从本指南中获益。

目录

💥Ollama介绍

➡️主要特点

➡️主要优点

Phi-3介绍

特点

应用场景

🤖部署教程

1.下载Ollama

2.下载phi3大模型

推荐使用场景

🎁第一种下载方式

🎁第二种方式下载


💥Ollama介绍

本地运行大型语言模型的强大工具

Ollama是一个开源框架,旨在为本地运行大型语言模型(LLM)提供简便易用的解决方案。是一个开源的、轻量级的本地大模型运行框架,旨在帮助用户轻松地在本地运行和管理各种大型语言模型(LLM)。它提供了一套简单易用的API,用于创建、运行和监控模型,并支持多种流行的LLM,包括GPT-3、Jurassic-1 Jumbo、Megatron-Turing NLG、WuDao 2.0和Bloom等。

💯趣站💯

前些天发现了一个巨牛的🤖人工智能学习网站,通俗易懂,风趣幽默,忍不住粉香一下给大家,人工智能, 机器算法等......  

点击跳转!icon-default.png?t=N7T8https://www.captainbed.cn/sis/

➡️主要特点


简化部署: Ollama 使用 Docker 容器技术来简化大型语言模型的部署和管理。用户只需简单的命令即可启动和停止模型,而无需担心底层的复杂性。

丰富的模型库: Ollama 提供了丰富的预训练模型库,涵盖了各种自然语言处理任务,如文本生成、翻译、问答等。用户可以轻松地选择和使用所需的模型。

跨平台支持: Ollama 支持多种操作系统,包括 Windows、macOS 和 Linux,使其能够满足不同用户的需求。

灵活的自定义: Ollama 提供了灵活的自定义选项,允许用户根据自己的需求调整模型的行为。

➡️主要优点


离线使用: Ollama 可以让用户在离线环境下使用LLM,这对于隐私敏感或网络连接不稳定的情况非常有用。

降低成本: Ollama 可以帮助用户降低使用LLM的成本,因为它避免了云服务的高昂费用。

提高安全性: Ollama 可以提高LLM使用的安全性,因为它允许用户完全控制自己的数据和模型。

应用场景
研究和教育: Ollama 可以用于自然语言处理、机器翻译、人工智能等领域的教学和研究。

开发和测试: Ollama 可以用于开发和测试新的自然语言处理应用程序。

个人使用: Ollama 可以用于个人创作、娱乐等目的

Phi-3介绍

Phi-3是由微软AI研究院开发的一系列小型语言模型(SLM),于2024年4月发布。Phi-3系列包括三种模型:Phi-3-Mini、Phi-3-Small和Phi-3-Medium,它们在保持较小模型尺寸的同时,还能提供与大型模型相媲美的性能。

特点

Phi-3模型具有以下特点:

小模型尺寸:Phi-3模型的参数量相对较小,例如Phi-3-Mini的参数量只有3.8亿,这使得它们可以在移动设备等资源受限的设备上运行。

高性能:Phi-3模型在语言、编码和数学能力的各种基准测试中,超越了同等大小甚至更大一号的模型。例如,Phi-3-Mini的性能优于两倍尺寸的模型,Phi-3-Small和Phi-3-Medium的性能优于更大的模型,包括GPT-3.5T

开源Phi-3模型是开源的,这意味着任何人都可以免费使用和修改它们。这使得Phi-3模型成为研究人员和开发人员的宝贵工具。

应用场景

Phi-3模型的潜在应用包括:

移动设备上的自然语言处理:Phi-3模型可以在移动设备上运行,这使得它们可以用于各种移动应用,例如聊天机器人、语音助手和机器翻译。

资源受限的设备上的自然语言处理:Phi-3模型可以在资源受限的设备上运行,这使得它们可以用于各种物联网 (IoT) 设备和嵌入式系统。

快速和高效的自然语言处理:Phi-3模型的推理速度比大型模型快得多,这使得它们可以用于需要快速响应的应用,例如实时聊天和语音识别。

🤖部署教程

1.下载Ollama

官网地址:点击跳转!

下一步默认下载即可过程十分简单就不演示了

2.下载phi3大模型

 点击官网的右上角Models

选择对应的模型版本参数复制即可(我选择3.8b的模型测试)

表格显示的是大概类别的模型参数比对(大家可以作为参考)

版本参数规模发布日期特点优势劣势推荐场景
Phi-3.8B3.8B2024年4月在Phi-2的基础上模型参数缩减至38亿,性能有所下降,但仍然优于同等规模的其他模型兼顾性能和效率,可用于多种自然语言处理任务参数规模相对较大,需要一定硬件支持对性能要求较高,但资源有限的场景
Phi-3.14B14B2024年4月在Phi-3.8B的基础上模型参数进一步缩减至14亿,性能有所下降,但仍然优于同等规模的其他模型更加轻量化,可用于移动设备等资源受限的场景参数规模较小,能力有所限制对性能要求不高,资源受限的场景
Phi-Mini100M2024年4月参数规模仅为1亿,性能相对较弱,但仍然可以完成一些简单的自然语言处理任务占用资源极少,可用于嵌入式设备等资源极度受限的场景参数规模非常小,能力非常有限对性能要求极低,资源极度受限的场景
Phi-Medium1B2024年4月参数规模为10亿,性能介于Phi-Mini和Phi-3.8B之间,可用于多种自然语言处理任务兼顾性能和效率,可用于多种场景参数规模相对较大,需要一定硬件支持对性能要求一般,资源有限的场景
Phi-1B-Instruct1B2024年4月基于Phi-1B模型微调而成,针对指令学习任务进行了优化,可用于完成更复杂的任务擅长指令学习任务,可用于完成更复杂的任务参数规模相对较大,需要一定硬件支持对指令学习任务有较高要求的场景

上表仅列举了Phi模型的常用版本,并非所有版本。

大模型的性能和优势劣势取决于多种因素,例如参数规模、训练数据、模型架构等。

用户在选择Phi模型版本时应根据具体需求进行综合考虑。

推荐使用场景

 如果您对性能要求较高,且资源充足,推荐使用Phi-3.8B或Phi-3.14B版本。

 如果您对性能要求不高,但资源有限,推荐使用Phi-Medium或Phi-1B-Instruct版本。

 如果您对性能要求极低,且资源极度受限,推荐使用Phi-Mini版本。

🎁第一种下载方式

我这里用phi3         3.8b来测试

命令行(打开cmd)输入官网复制的命令

  

在命令行输入 以下命令 等待时长即可下载完成(确保ollama在运行)

ollama run phi3

🎁第二种方式下载

基于OpenWebUI下载

开源地址

首先需要安装Docker容器(自行了解安装,去官网下载步骤也是十分的简单)

复制这条命令( Ollama 在您的计算机上使用以下命令)

不同的条件下,有不同的命令,详细见开源地址所述

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

下载完docker之后 cmd命令行输入上述命令

等待完成即可

安装完成之后访问本地的3000端口

也可以点击自己的Docker,点击访问即可

 先点击左下角的设置改为中文简体(方便观看)

  

点击模型这边下载phi3 复制官网的运行地址也就是命令输入的命令

等待下载完成即可

下载完成之后上边会显示(你所下载的大模型)

选择我们刚刚下载的大模型进行使用对话 

  

问题:

谈谈你对于AI大爆发的看法

回答:

作为一个人工智能,我没有真正的想法或情感表达,但是可以分析和阐述一些关于AI大爆发这一主题的普遍观点。人工智能(AI)在近年来得到了巨大进展,从自动化计算机操作到深度学习和神经网络等技术方面都取得重大突破。这种快速发展引发了对AI伦理、隐私保护以及其影响的广泛讨论。一个称为"AI大爆发"的观点主要基于以下几个方面:自然选择机制:AI技术可能会引发自然选择机制,也就是说,由于其资源丰富且高效的性能,最好的算法和模型在生物界上可能会“继续代码”。这种思想被称为"技术自然选择"。对人类社会的影响:AI的发展可能会改变就职市场、教育系统、金融行业等多个领域,引起社会结构和经济格局的重大变化。监管与规制:AI技术的发展也需要相应的法规和政策来保障其合理使用,并确保公共利益。然而,这些看法往往是假设性或带有一定程度的悲观色彩。科技发展和人类社会之间的关系复杂多变,AI的未来趋势仍然不确切且需要持续的研究与讨论。

我采用的模型参数较低可能回答的不是那么完美,这里仅作为参考

但是在回答问题的过程中会占用你的CPU和内存

🎁注意事项

根据电脑性能,来下载对应的大模型

如果是服务器的话,可根据开源地址所说明下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/23836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全:https劫持

文章目录 参考https原理https窃听手段SSL/TLS降级原理难点缺点 SSL剥离原理发展缺点前端劫持 MITM攻击透明代理劫持 参考 https原理 SNI 浏览器校验SSL证书 https降级 https握手抓包解析 lets encrypt申请证书 https原理 步骤如下: 客户端向服务器发送https请求。…

动态IP与静态IP的优缺点

在网络连接中,使用动态和静态 IP 地址取决于连接的性质和要求。静态 IP 地址通常更适合企业相关服务,而动态 IP 地址更适合家庭网络。让我们来看看动态 IP 与静态 IP 的优缺点。 1.静态IP的优点: 更好的 DNS 支持:静态 IP 地址在…

MATLAB基础应用精讲-【数模应用】二元Logit分析(最终篇)(附python、MATLAB和R语言代码实现)

目录 算法原理 SPSSAU 1、二元logistic分析思路说明 2、如何使用SPSSAU进行二元logistic操作 3、二元logistic相关问题 算法流程 一、分析前准备 1、确定分析项 2.多重共线性判断 3.数据预处理 二、回归基本情况分析 三、模型拟合评价 1、似然比检验 2、拟合优…

晶圆几何量测系统支持半导体制造工艺量测,保障晶圆制造工艺质量

晶圆面型参数厚度、TTV、BOW、Warp、表面粗糙度、膜厚、等是芯片制造工艺必须考虑的几何形貌参数。其中TTV、BOW、Warp三个参数反映了半导体晶圆的平面度和厚度均匀性,对于芯片制造过程中的多个关键工艺质量有直接影响。 TTV、BOW、WARP对晶圆制造工艺的影响 对…

详细分析Mysql中的 JSON_ARRAYAGG 基本知识(附Demo)

目录 1. 基本知识2. Demo2.1 简单聚合2.2 带排序聚合2.2.1 子查询进行排序2.2.2 创建临时表 2.3 带条件聚合2.4 多列聚合2.5 嵌套 JSON 结构 1. 基本知识 JSON_ARRAYAGG为 SQL 聚合函数,用于将一组值聚合为一个 JSON 数组 多行结果组合成一个 JSON 数组形式的场景…

企业研发数据泄露损失严重,研发数据保护到底怎么才能有效落地?

数据已成为企业毋庸置疑的核心资产,而企业众多数据中,研发数据则占据着重要的角色,近年来,发生了多起企业研发数据被窃取或泄露的事件,给企业带来严重的名誉、经济损失: 小米公司:2023年1月&am…

Linux驱动应用编程(三)UART串口

本文目录 前述一、手册查看二、命令行调试串口1. 查看设备节点2. 使用stty命令设置串口3. 查看串口配置信息4. 调试串口 三、代码编写1. 常用API2. 例程线程优化 前述 在开始实验前,请一定要检查测试好所需硬件是否使用正常,不然调试过程中出现的问题&am…

华为机考入门python3--(33)牛客33-图片整理

分类:排序 知识点: 对字符串中的字符ASCII码排序 sorted(my_str) 题目来自【牛客】 def sort_images(s):# 可以使用ord(A)求A的ASCII值,需要注意的是A的值(65)比a的值小(97)sorted_images …

70 Realistic Mountain Environment Textures Cliff(70+张真实的山地环境纹理)

大量适合山区和其他岩石环境的纹理--悬崖、岩石、砾石等等 每个纹理都是可贴的/无缝的,并且完全兼容各种不同的场景--标准Unity地形、Unity标准着色器、URP、HDRP等等都兼容。 所有的纹理都是4096x4096,并包括一个HDRP掩码,以完全支持HDRP。 特点。 70种质地 70种材料 70个地…

AI视频教程下载:用LangChain开发 ChatGPT和 LLMs 应用

在这个快速变化的人工智能时代,我们为您带来了一场关于语言模型和生成式人工智能的革命性课程。这不仅仅是一个课程,而是一次探险,一次深入人工智能核心的奇妙之旅。 在这里,您将开启一段激动人心的旅程,探索语言模型…

利用架构挖掘增强云管理

管理当今复杂的云环境比以往任何时候都更加重要。 大多数企业依赖 AWS、Azure、Kubernetes 和 Microsoft Entra ID 等各种平台来支持其运营,但管理这些平台可能会带来重大挑战。 云优化的最大挑战涉及安全性、成本管理和了解云基础设施内错综复杂的相互依赖关系。…

【数据库】255对比256的优势

文章目录 2552^8-1 ,很多时候用到255却步凑整到256,这是为啥呢?一番了解总结 2552^8-1 ,很多时候用到255却步凑整到256,这是为啥呢? 比如下面的两种情况: RabbitMQ的routing_key 和 binding_key 的最大长度255 字节。Navicat添…

基于springboot实现农产品直卖平台系统项目【项目源码+论文说明】

基于springboot实现农产品直卖平台系统的设计演示 摘要 计算机网络发展到现在已经好几十年了,在理论上面已经有了很丰富的基础,并且在现实生活中也到处都在使用,可以说,经过几十年的发展,互联网技术已经把地域信息的隔…

常见的Web漏洞——CORS

渗透做了多年的朋友都知道,大洞小洞都是漏洞。因此也学习、沉淀一下以前没重视的漏洞。 简介 CORS(Cross-Origin Resource Sharing,跨源资源共享)是一种由Web浏览器实现的安全策略,用于控制一个Web页面(服…

finereport 9.0 Tomcat 集群-来自帆软

Tomcat服务器集群 目录: 1. 描述3. 配置过程4. 结果测试 1. 描述 在单一的服务器上执行WEB应用程序有一些问题,当网站成功建成并开始接受大量请求时,单一服务器无法满足需要处理的负荷量。 另外一个常见的问题是会产生单点故障,如果该服务器坏…

Java桥接模式

桥接模式 最重要的是 将 抽象 与 实现 解耦 , 通过组合 在 抽象 与 实现 之间搭建桥梁 ; 【设计模式】桥接模式 ( 简介 | 适用场景 | 优缺点 | 代码示例 )-CSDN博客 桥接模式(Bridge Pattern)-(最通俗易懂的案例)_桥接模式 例子-…

高效学习LabVIEW的方法

学习LabVIEW可以通过系统化课程、在线资源、自学实验、参与论坛、结合实际项目等多角度进行。系统课程提供全面基础,在线资源便于查漏补缺,自学实验强化理解,论坛互动解决疑难,结合实际项目应用提高实践技能。结合项目学习是最高效…

python3 -m http.server 检查打包前端的项目

python3 -m http.server这是 Python 提供的一个内置的简单 HTTP 服务器。当你在终端中运行 python3 -m http.server 命令时(在对应的打包目录比如dist目录),Python 会启动一个 HTTP 服务器,它会将当前工作目录下的文件作为静态文件提供给浏览器。这个服务…

LabVIEW软件开发人员的核心能力是什么

LabVIEW软件开发人员的核心能力包括以下几个方面: 1. LabVIEW编程技能 熟练掌握LabVIEW编程语言:包括虚拟仪器(VI)的创建、数据流编程、图形化编程技巧等。 模块化编程:能够设计和实现模块化的代码结构,便…

数据结构与算法之计数排序

目录 前言 计数排序 定义 优缺点 策略 图解 代码实现 结束语 前言 今天是坚持写博客的第20天,时光飞逝,第二个10天即将过去,希望可以继续坚持,光明的未来也在未来等着我们。今天也恰逢高考,祝所有学子一帆风顺…