C# Onnx E2Pose人体关键点检测

C# Onnx E2Pose人体关键点检测

 

目录

效果

模型信息

项目

代码

下载


效果

模型信息

Inputs
-------------------------
name:inputimg
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

Outputs
-------------------------
name:kvxy/concat
tensor:Float[1, 341, 17, 3]
name:pv/concat
tensor:Float[1, 341, 1, 1]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        int inpHeight, inpWidth;
        float confThreshold;

        int[] connect_list = { 0, 1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 6, 5, 7, 7, 9, 6, 8, 8, 10, 5, 11, 6, 12, 11, 12, 11, 13, 13, 15, 12, 14, 14, 16 };

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        unsafe private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            //读图片
            image = new Mat(image_path);

            //将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB);

            Cv2.Resize(image_rgb, image_rgb, new OpenCvSharp.Size(inpHeight, inpWidth));

            //输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth });
            for (int y = 0; y < image_rgb.Height; y++)
            {
                for (int x = 0; x < image_rgb.Width; x++)
                {
                    input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0];
                    input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1];
                    input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("inputimg", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] kpt = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pv = results_onnxvalue[1].AsTensor<float>().ToArray();

            float[] temp = new float[51];

            int num_proposal = 341;
            int num_pts = 17;
            int len = num_pts * 3;

            List<List<int>> results = new List<List<int>>();
            for (int i = 0; i < num_proposal; i++)
            {
                Array.Copy(kpt, i * 51, temp, 0, 51);

                if (pv[i] >= confThreshold)
                {
                    List<int> human_pts = new List<int>();
                    for (int ii = 0; ii < num_pts * 2; ii++)
                    {
                        human_pts.Add(0);
                    }

                    for (int j = 0; j < num_pts; j++)
                    {
                        float score = temp[j * 3] * 2;
                        if (score >= confThreshold)
                        {
                            float x = temp[j * 3 + 1] * image.Cols;
                            float y = temp[j * 3 + 2] * image.Rows;
                            human_pts[j * 2] = (int)x;
                            human_pts[j * 2 + 1] = (int)y;
                        }
                    }
                    results.Add(human_pts);
                }
            }

            result_image = image.Clone();
            int start_x = 0;
            int start_y = 0;
            int end_x = 0;
            int end_y = 0;

            for (int i = 0; i < results.Count; ++i)
            {
                for (int j = 0; j < num_pts; j++)
                {
                    int cx = results[i][j * 2];
                    int cy = results[i][j * 2 + 1];
                    if (cx > 0 && cy > 0)
                    {
                        Cv2.Circle(result_image, new OpenCvSharp.Point(cx, cy), 3, new Scalar(0, 0, 255), -1, LineTypes.AntiAlias);
                    }

                    start_x = results[i][connect_list[j * 2] * 2];
                    start_y = results[i][connect_list[j * 2] * 2 + 1];
                    end_x = results[i][connect_list[j * 2 + 1] * 2];
                    end_y = results[i][connect_list[j * 2 + 1] * 2 + 1];

                    if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)
                    {
                        Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);
                    }
                }

                start_x = results[i][connect_list[num_pts * 2] * 2];
                start_y = results[i][connect_list[num_pts * 2] * 2 + 1];
                end_x = results[i][connect_list[num_pts * 2 + 1] * 2];
                end_y = results[i][connect_list[num_pts * 2 + 1] * 2 + 1];

                if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)
                {
                    Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);
                }
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/e2epose_resnet50_1x3x512x512.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            inpWidth = 512;
            inpHeight = 512;

            confThreshold = 0.5f;

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;int inpHeight, inpWidth;float confThreshold;int[] connect_list = { 0, 1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 6, 5, 7, 7, 9, 6, 8, 8, 10, 5, 11, 6, 12, 11, 12, 11, 13, 13, 15, 12, 14, 14, 16 };private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}unsafe private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";Application.DoEvents();//读图片image = new Mat(image_path);//将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB);Cv2.Resize(image_rgb, image_rgb, new OpenCvSharp.Size(inpHeight, inpWidth));//输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth });for (int y = 0; y < image_rgb.Height; y++){for (int x = 0; x < image_rgb.Width; x++){input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0];input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1];input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2];}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("inputimg", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();float[] kpt = results_onnxvalue[0].AsTensor<float>().ToArray();float[] pv = results_onnxvalue[1].AsTensor<float>().ToArray();float[] temp = new float[51];int num_proposal = 341;int num_pts = 17;int len = num_pts * 3;List<List<int>> results = new List<List<int>>();for (int i = 0; i < num_proposal; i++){Array.Copy(kpt, i * 51, temp, 0, 51);if (pv[i] >= confThreshold){List<int> human_pts = new List<int>();for (int ii = 0; ii < num_pts * 2; ii++){human_pts.Add(0);}for (int j = 0; j < num_pts; j++){float score = temp[j * 3] * 2;if (score >= confThreshold){float x = temp[j * 3 + 1] * image.Cols;float y = temp[j * 3 + 2] * image.Rows;human_pts[j * 2] = (int)x;human_pts[j * 2 + 1] = (int)y;}}results.Add(human_pts);}}result_image = image.Clone();int start_x = 0;int start_y = 0;int end_x = 0;int end_y = 0;for (int i = 0; i < results.Count; ++i){for (int j = 0; j < num_pts; j++){int cx = results[i][j * 2];int cy = results[i][j * 2 + 1];if (cx > 0 && cy > 0){Cv2.Circle(result_image, new OpenCvSharp.Point(cx, cy), 3, new Scalar(0, 0, 255), -1, LineTypes.AntiAlias);}start_x = results[i][connect_list[j * 2] * 2];start_y = results[i][connect_list[j * 2] * 2 + 1];end_x = results[i][connect_list[j * 2 + 1] * 2];end_y = results[i][connect_list[j * 2 + 1] * 2 + 1];if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0){Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);}}start_x = results[i][connect_list[num_pts * 2] * 2];start_y = results[i][connect_list[num_pts * 2] * 2 + 1];end_x = results[i][connect_list[num_pts * 2 + 1] * 2];end_y = results[i][connect_list[num_pts * 2 + 1] * 2 + 1];if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0){Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);}}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/e2epose_resnet50_1x3x512x512.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);inpWidth = 512;inpHeight = 512;confThreshold = 0.5f;}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/22779.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电商API商品数据采集接口||助力电商企业采集商品大数据提高开发效率

提高开发效率&#xff1a;电商API接口允许不同的应用程序之间高效地进行交互&#xff0c;节省了大量的人力物力成本&#xff0c;使得开发者可以将更多时间和精力集中于自身的核心业务。 增加数据安全性&#xff1a;通过对数据进行安全加密&#xff0c;API接口实现了对数据的保护…

JVM参数配置

JVM参数的三种表示方法 在jvm中&#xff0c;jvm虚拟机参数有以下三种表示方法&#xff1a; 标准参数&#xff08;-&#xff09;所有的JVM实现都必须实现这些参数的功能&#xff0c;而且向后兼容非标准参数&#xff08;-X&#xff09;&#xff0c;默认jvm实现这些参数的功能&…

罗永浩创业史!普通人也能逆袭!2024轻资产创业项目!2024普通人的出路! 2024普通人做什么行业赚钱!

罗永浩出身草根&#xff0c;一路打拼至今&#xff0c;虽然屡屡受挫但是从未妥协&#xff0c;罗永浩真正的诠释了什么叫“彪悍的人生不需要解释”&#xff01; 回顾罗永浩的传奇创业史: 1. 从新东方出来做牛博网--失败 2.创办老罗英语培训学校--失败 3.致敬乔布斯做锤子科技-…

写一个盲盒模拟器

最近想写一个小程序&#xff0c;随便写一个玩吧&#xff0c;先想了下功能&#xff1a; 1.有很多盲盒&#xff0c;可以选择模拟开启 2.自定义盲盒&#xff0c;我们可以自定义制作盲盒自己玩 3.用户界面&#xff0c;记录盲盒历史&#xff0c;可以给坏越提意见 所用技术栈&…

django 旅游服务系统-计算机毕业设计源码88939

摘 要 旅游服务系统采用采用django框架、python语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分&#xff0c;管理员管理主要功能包括&#xff1a;首页、轮播图&#xff08;轮播图管理&#xff09;、公告信息管理&#xff08;公告信息&#xff09;、资源管理&…

开源模型应用落地-LangSmith试炼-入门初体验-监控和自动化(五)

一、前言 在许多应用程序中&#xff0c;特别是在大型语言模型(LLM)应用程序中&#xff0c;收集用户反馈以了解应用程序在实际场景中的表现是非常重要的。 LangSmith可以轻松地将用户反馈附加到跟踪数据中。通常最好提供一个简单的机制(如赞成和反对按钮)来收集用户对应用程序响…

neo4j入门并使用案例说明

1、neo4j是什么 Neo4j是一个高性能的NoSQL图形数据库&#xff0c;它将结构化数据存储在网络&#xff08;在数学角度称为图&#xff09;上&#xff0c;而不是传统的表中。Neo4j是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎。它因其高性能、轻量级、易嵌入和…

大模型时代的具身智能系列专题(九)

NYU Lerrel Pinto团队 Lerrel Pinto是NYU Courant的计算机科学助理教授&#xff0c;也是用机器人和人工智能实验室(CILVR小组)的一员。在加州大学伯克利分校读博士后&#xff0c;在CMU机器人研究所读博士&#xff0c;在印度理工学院古瓦哈蒂读本科。研究目标是让机器人在我们生…

Linux 35.5 + JetPack v5.1.3@FUEL编译安装

Linux 35.5 JetPack v5.1.3FUEL编译安装 1. 源由2. 编译&安装Step 1&#xff1a;依赖库安装Step 2&#xff1a;建立工程Step 3&#xff1a;编译工程Step 4&#xff1a;安装工程 3. 问题汇总3.1 fuel_planner/exploration_manager - dw3.2 fuel_planner/plan_env - OpenCV库…

找不到d3dx9_43.dll怎么修复?这个几种修复方法轻松解决

在计算机使用过程中&#xff0c;我们常常会遇到一些错误提示&#xff0c;其中之一就是“d3dx943.dll丢失”。这个问题通常会导致某些游戏或应用程序无法正常运行。为了解决这个问题&#xff0c;我总结出了以下五种解决方法&#xff0c;希望能对遇到类似问题的朋友们有所帮助。 …

QNX 7.0.0开发总结

1 QNX编译 1.1 基本概念 QNX可以直接使用Linux Makefile编译库和二进制&#xff0c;在Makefile文件中指定CCaarch64-unknown-nto-qnx7.0.0-g&#xff0c;或者CCx86_64-pc-nto-qnx7.0.0-g&#xff0c;保存退出后&#xff0c;运行source /qnx_sdk_path/qnxsdp-env.sh&#xff0c;…

前端canvas绘图,利用canvas在图片上面绘制标记以及给canvas添加点击事件。

前端canvas绘图&#xff0c;利用canvas在图片上面绘制标记以及给canvas添加点击事件。 需要实现的效果如下图: 首先需要一个承载的核心画布 <canvas id"canvas" width"800" height"600"></canvas>全部代码&#xff1a; <!DOCT…

LabVIEW减压阀和温控阀综合测试系统

在使用LabVIEW开发阀门测试软件时&#xff0c;特别是针对减压阀和温控阀&#xff0c;测试内容和注意事项包括以下方面&#xff1a; 测试内容 压力测试&#xff1a; 入口压力&#xff1a;测量阀门在不同入口压力下的表现。 出口压力&#xff1a;确保减压阀能够将出口压力控制在…

systemctlm-cosim-demo项目分析

概述 systemctlm-cosim-demo项目是Xilinx的systemc库的demo工程。 环境安装 qemu安装 cd xilinx_proj/Downloads git clone https://github.com/Xilinx/qemu.git cd qemu git checkout 74d70f8008# Configure and build # zynq7000 # ./configure --target-list"arm-s…

【乐吾乐3D可视化组态编辑器】用开关控制巡检车和路灯

一、运动设备开关控制 3D组态编辑器地址&#xff1a;3D可视化组态 - 乐吾乐Le5le 1.在场景中新建模拟运动设备及控制面板&#xff1a;启动/停止 2.单击巡检车设备新建模拟动画 3.设置模拟动画属性 4.单击启动面板&#xff0c;新建交互事件 5.设置交互触发类型&#xff0c;新建…

PS系统教程11

HUD拾色器 作用&#xff1a;它可以帮助使用者更加高效地选择和使用颜色&#xff0c;从而提高工作效率和设计质量。 先确定色相值改变饱和度改变亮度使用HUD拾色器选中画笔工具画笔模式-正常shiftAlt右键 色相轮 上下移动从黑到白亮度变化左右移动从浅到深饱和度的变化选中颜…

数据分析必备:一步步教你如何用Pandas做数据分析(17)

1、Pandas 连接 Pandas 连接的操作实例 Pandas具有与SQL等关系数据库非常相似的功能齐全的高性能内存中连接操作。 Pandas提供单个功能merge作为DataFrame对象之间所有标准数据库联接操作的入口点 pd.merge(left, right, howinner, onNone, left_onNone, right_onNone,left_i…

新手必看!现货伦敦金新手容易犯的两个错

对很多刚进入现货伦敦金市场的朋友来说&#xff0c;炒伦敦金是十分令人兴奋的&#xff0c;但兴奋归兴奋&#xff0c;我们还是要注意&#xff0c;由于现货伦敦金投资者过分的热情&#xff0c;很容易让自己跌入一些陷阱&#xff0c;犯下一些错误&#xff0c;下面我们就来介绍两个…

智能楼宇安防3D数据可视化平台满足日益增长的安防需求

在当今社会&#xff0c;安全是每个人和企业最为关心的问题。为满足日益增长的安防需求&#xff0c;3D可视化公司深圳华锐视点隆重推出安防平台3D可视化管理系统&#xff0c;以先进的三维技术为您的安全保驾护航。 安防平台3D可视化管理系统通过创新的三维可视化技术&#xff0c…

纷享销客BI智能分析平台技术架构介绍

纷享销客BI智能分析平台致力于降低用户上手门槛&#xff0c;无缝继承纷享销客PaaS平台的对象关系模型和权限体系&#xff0c;让使用纷享CRM的营销人员、销售人员、服务人员等各类角色人员都能够将分析场景与业务场景相融合&#xff0c;将数据思维融合到自己的日常工作、团队工作…