Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本安装

Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本安装

  • 1. 源由
  • 2. 步骤
    • 2.1 Step1:系统安装
    • 2.2 Step2: nvidia-jetpack安装
    • 2.3 Step3:jtop安装
    • 2.4 Step4:h5py安装
    • 2.5 Step5:tensorflow安装
    • 2.6 Step6:jupyterlab安装
  • 3. 测试
  • 4. 参考资料
  • 5. 补充
    • 5.1 直接安装tensorflow==2.15.0+nv24.05 - “Failed to build h5py”
    • 5.2 直接安装h5py - “Failed to build h5py”
    • 5.3 无头安装 - Headless installation

1. 源由

  1. Jetson Orin Nano Linux 36.2 6.0DP 对tensorflow支持上存在BUG,导致某些场景异常。不推荐使用6.0DP, Develop View Version,详见:Jammy@Jetson Orin Nano - Tensorflow GPU版本安装
  2. NVIDIA对于三方库(tensorflow)的支持不是很给力,可能源于内部商业逻辑,研发资源投入不足。发布的版本,仍然存在诸多安装问题。

虽然NVIDIA存在诸多资源配置上的问题,但是对开源还是有些许资源配给和验证,证明了这块热点区域的价值。

为此,我们特地整理一份资料,以便对于Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本的安装提供解决方法。

2. 步骤

2.1 Step1:系统安装

详细请参考:

  • Linux 36.3@Jetson Orin Nano之系统安装
  • Linux 36.2@Jetson Orin Nano之基础环境构建

2.2 Step2: nvidia-jetpack安装

注:默认不安装nvidia-jetpack。

$ sudo apt update
$ sudo apt install nvidia-jetpack

2.3 Step3:jtop安装

用于查看nvidia-jetpack安装情况。

$ sudo apt update
$ sudo apt install python3-pip
$ sudo pip3 install -U jetson-stats
$ sudo systemctl restart jtop.service

2.4 Step4:h5py安装

注:这个步骤非常重要,如果不做会出现补充部分描述的h5py编译失败错误。相关解决方法在jetson nano上就有,但是到了jetson orin nano上依然存在:Failed to build wheel for h5py , in JETSON NANO。

$ sudo apt-get install python3-pip
$ sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev 
$ sudo pip3 install cython
$ sudo pip3 install h5py
Collecting h5pyUsing cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Requirement already satisfied: numpy>=1.17.3 in /usr/lib/python3/dist-packages (from h5py) (1.21.5)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... -                                                                                                                                                doneCreated wheel for h5py: filename=h5py-3.11.0-cp310-cp310-linux_aarch64.whl size=6906150 sha256=e91885c8ae20d8207e79bd0aee4f794338ba8df1bd4634a8d41926c2f230697eStored in directory: /root/.cache/pip/wheels/54/6c/66/4f9de317fb7a5505a348881fc3666b289fde493612707458a3
Successfully built h5py
Installing collected packages: h5py
Successfully installed h5py-3.11.0
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

2.5 Step5:tensorflow安装

虽然这里提示不少问题,重点放在第一点:

  1. tensorflow-2.15.0+nv24.5安装成功

Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 cachetools-5.3.3 flatbuffers-24.3.25 gast-0.5.4 google-auth-2.29.0 google-auth-oauthlib-1.2.0 google-pasta-0.2.0 grpcio-1.64.0 keras-2.15.0 libclang-18.1.1 ml-dtypes-0.2.0 numpy-1.26.4 opt-einsum-3.3.0 protobuf-4.25.3 pyasn1-0.6.0 pyasn1-modules-0.4.0 requests-oauthlib-2.0.0 rsa-4.9 tensorboard-2.15.2 tensorboard-data-server-0.7.2 tensorflow-2.15.0+nv24.5 tensorflow-estimator-2.15.0 tensorflow-io-gcs-filesystem-0.37.0 termcolor-2.4.0 werkzeug-3.0.3 wrapt-1.14.1

  1. pip的依赖关系可能存在问题

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
onnx-graphsurgeon 0.3.12 requires onnx, which is not installed.

  1. sudo安装友情提示

WARNING: Running pip as the ‘root’ user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60 tensorflow==2.15.0+nv24.05
Looking in indexes: https://pypi.org/simple, https://developer.download.nvidia.com/compute/redist/jp/v60
Collecting tensorflow==2.15.0+nv24.05Using cached https://developer.download.nvidia.cn/compute/redist/jp/v60/tensorflow/tensorflow-2.15.0%2Bnv24.05-cp310-cp310-linux_aarch64.whl (465.5 MB)
Collecting absl-py>=1.0.0 (from tensorflow==2.15.0+nv24.05)Using cached absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting astunparse>=1.6.0 (from tensorflow==2.15.0+nv24.05)Using cached astunparse-1.6.3-py2.py3-none-any.whl.metadata (4.4 kB)
Collecting flatbuffers>=23.5.26 (from tensorflow==2.15.0+nv24.05)Using cached flatbuffers-24.3.25-py2.py3-none-any.whl.metadata (850 bytes)
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow==2.15.0+nv24.05)Using cached gast-0.5.4-py3-none-any.whl.metadata (1.3 kB)
Collecting google-pasta>=0.1.1 (from tensorflow==2.15.0+nv24.05)Using cached google_pasta-0.2.0-py3-none-any.whl.metadata (814 bytes)
Requirement already satisfied: h5py>=2.9.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (3.11.0)
Collecting libclang>=13.0.0 (from tensorflow==2.15.0+nv24.05)Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl.metadata (5.2 kB)
Collecting ml-dtypes~=0.2.0 (from tensorflow==2.15.0+nv24.05)Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (20 kB)
Collecting numpy<2.0.0,>=1.23.5 (from tensorflow==2.15.0+nv24.05)Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (62 kB)
Collecting opt-einsum>=2.3.2 (from tensorflow==2.15.0+nv24.05)Using cached opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (24.0)
Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow==2.15.0+nv24.05)Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl.metadata (541 bytes)
Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (70.0.0)
Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (1.16.0)
Collecting termcolor>=1.1.0 (from tensorflow==2.15.0+nv24.05)Using cached termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)
Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (4.12.0)
Collecting wrapt<1.15,>=1.11.0 (from tensorflow==2.15.0+nv24.05)Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (6.7 kB)
Collecting tensorflow-io-gcs-filesystem>=0.23.1 (from tensorflow==2.15.0+nv24.05)Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (14 kB)
Collecting grpcio<2.0,>=1.24.3 (from tensorflow==2.15.0+nv24.05)Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl.metadata (3.3 kB)
Collecting tensorboard<2.16,>=2.15 (from tensorflow==2.15.0+nv24.05)Using cached tensorboard-2.15.2-py3-none-any.whl.metadata (1.7 kB)
Collecting tensorflow-estimator<2.16,>=2.15.0 (from tensorflow==2.15.0+nv24.05)Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl.metadata (1.3 kB)
Collecting keras<2.16,>=2.15.0 (from tensorflow==2.15.0+nv24.05)Using cached keras-2.15.0-py3-none-any.whl.metadata (2.4 kB)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow==2.15.0+nv24.05) (0.43.0)
Collecting google-auth<3,>=1.6.3 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached google_auth-2.29.0-py2.py3-none-any.whl.metadata (4.7 kB)
Collecting google-auth-oauthlib<2,>=0.5 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata (2.7 kB)
Requirement already satisfied: markdown>=2.6.8 in /usr/lib/python3/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.6)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2.32.2)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached werkzeug-3.0.3-py3-none-any.whl.metadata (3.7 kB)
Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached cachetools-5.3.3-py3-none-any.whl.metadata (5.3 kB)
Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached pyasn1_modules-0.4.0-py3-none-any.whl.metadata (3.4 kB)
Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached rsa-4.9-py3-none-any.whl.metadata (4.2 kB)
Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl.metadata (11 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (1.26.5)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2020.6.20)
Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (3.0 kB)
Collecting pyasn1<0.7.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached pyasn1-0.6.0-py2.py3-none-any.whl.metadata (8.3 kB)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/lib/python3/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.2.0)
Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)
Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Using cached flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)
Using cached gast-0.5.4-py3-none-any.whl (19 kB)
Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl (5.4 MB)
Using cached keras-2.15.0-py3-none-any.whl (1.7 MB)
Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl (23.8 MB)
Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB)
Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB)
Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl (293 kB)
Using cached tensorboard-2.15.2-py3-none-any.whl (5.5 MB)
Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)
Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB)
Using cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (78 kB)
Using cached google_auth-2.29.0-py2.py3-none-any.whl (189 kB)
Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB)
Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Using cached werkzeug-3.0.3-py3-none-any.whl (227 kB)
Using cached cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26 kB)
Using cached pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)
Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)
Using cached rsa-4.9-py3-none-any.whl (34 kB)
Using cached pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)
Installing collected packages: libclang, flatbuffers, wrapt, termcolor, tensorflow-io-gcs-filesystem, tensorflow-estimator, tensorboard-data-server, pyasn1, protobuf, numpy, MarkupSafe, keras, grpcio, google-pasta, gast, cachetools, astunparse, absl-py, werkzeug, rsa, requests-oauthlib, pyasn1-modules, opt-einsum, ml-dtypes, google-auth, google-auth-oauthlib, tensorboard, tensorflowAttempting uninstall: protobufFound existing installation: protobuf 3.12.4Uninstalling protobuf-3.12.4:Successfully uninstalled protobuf-3.12.4Attempting uninstall: numpyFound existing installation: numpy 1.21.5Uninstalling numpy-1.21.5:Successfully uninstalled numpy-1.21.5Attempting uninstall: MarkupSafeFound existing installation: MarkupSafe 2.0.1Uninstalling MarkupSafe-2.0.1:Successfully uninstalled MarkupSafe-2.0.1Attempting uninstall: gastFound existing installation: gast 0.5.2Uninstalling gast-0.5.2:Successfully uninstalled gast-0.5.2
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
onnx-graphsurgeon 0.3.12 requires onnx, which is not installed.
Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 cachetools-5.3.3 flatbuffers-24.3.25 gast-0.5.4 google-auth-2.29.0 google-auth-oauthlib-1.2.0 google-pasta-0.2.0 grpcio-1.64.0 keras-2.15.0 libclang-18.1.1 ml-dtypes-0.2.0 numpy-1.26.4 opt-einsum-3.3.0 protobuf-4.25.3 pyasn1-0.6.0 pyasn1-modules-0.4.0 requests-oauthlib-2.0.0 rsa-4.9 tensorboard-2.15.2 tensorboard-data-server-0.7.2 tensorflow-2.15.0+nv24.5 tensorflow-estimator-2.15.0 tensorflow-io-gcs-filesystem-0.37.0 termcolor-2.4.0 werkzeug-3.0.3 wrapt-1.14.1
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

2.6 Step6:jupyterlab安装

$ sudo pip3 install jupyterlab

3. 测试

在v6.0DP版本中存在Inconsistency of NVIDIA 2.15.0+nv24.03 v.s. Colab v.s. Tensorflow Documentation问题。

Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本不存在上述问题,经验证:

在这里插入图片描述

在这里插入图片描述

测试代码:008_Keras-Transfer_Learning
在这里插入图片描述

4. 参考资料

【1】Linux 36.2@Jetson Orin Nano之Hello AI World!
【2】ubuntu22.04@Jetson Orin Nano之OpenCV安装
【3】ubuntu22.04@Jetson Orin Nano之CSI IMX219安装
【4】ubuntu22.04@Jetson Orin Nano安装&配置VNC服务端

5. 补充

5.1 直接安装tensorflow==2.15.0+nv24.05 - “Failed to build h5py”

$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60 tensorflow==2.15.0+nv24.05
[sudo] password for daniel:
Looking in indexes: https://pypi.org/simple, https://developer.download.nvidia.com/compute/redist/jp/v60
Collecting tensorflow==2.15.0+nv24.05Downloading https://developer.download.nvidia.cn/compute/redist/jp/v60/tensorflow/tensorflow-2.15.0%2Bnv24.05-cp310-cp310-linux_aarch64.whl (465.5 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 465.5/465.5 MB 2.0 MB/s eta 0:00:00
Collecting wrapt<1.15,>=1.11.0Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (78 kB)
Collecting absl-py>=1.0.0Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (24.0)
Requirement already satisfied: setuptools in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (59.6.0)
Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl (293 kB)
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1Using cached gast-0.5.4-py3-none-any.whl (19 kB)
Collecting grpcio<2.0,>=1.24.3Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl (5.4 MB)
Collecting google-pasta>=0.1.1Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
Collecting astunparse>=1.6.0Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting opt-einsum>=2.3.2Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
Collecting keras<2.16,>=2.15.0Using cached keras-2.15.0-py3-none-any.whl (1.7 MB)
Collecting tensorflow-estimator<2.16,>=2.15.0Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)
Collecting numpy<2.0.0,>=1.23.5Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB)
Collecting flatbuffers>=23.5.26Using cached flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)
Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (1.16.0)
Collecting libclang>=13.0.0Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl (23.8 MB)
Collecting ml-dtypes~=0.2.0Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB)
Collecting termcolor>=1.1.0Using cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Collecting tensorboard<2.16,>=2.15Using cached tensorboard-2.15.2-py3-none-any.whl (5.5 MB)
Collecting h5py>=2.9.0Using cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Collecting tensorflow-io-gcs-filesystem>=0.23.1Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB)
Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (4.12.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/lib/python3/dist-packages (from astunparse>=1.6.0->tensorflow==2.15.0+nv24.05) (0.37.1)
Requirement already satisfied: markdown>=2.6.8 in /usr/lib/python3/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.6)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2.32.2)
Collecting google-auth-oauthlib<2,>=0.5Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB)
Collecting werkzeug>=1.0.1Using cached werkzeug-3.0.3-py3-none-any.whl (227 kB)
Collecting tensorboard-data-server<0.8.0,>=0.7.0Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Collecting google-auth<3,>=1.6.3Using cached google_auth-2.29.0-py2.py3-none-any.whl (189 kB)
Collecting rsa<5,>=3.1.4Using cached rsa-4.9-py3-none-any.whl (34 kB)
Collecting pyasn1-modules>=0.2.1Using cached pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)
Collecting cachetools<6.0,>=2.0.0Using cached cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Collecting requests-oauthlib>=0.7.0Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2020.6.20)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (1.26.5)
Collecting MarkupSafe>=2.1.1Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26 kB)
Collecting pyasn1<0.7.0,>=0.4.6Using cached pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/lib/python3/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.2.0)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... errorerror: subprocess-exited-with-error× Building wheel for h5py (pyproject.toml) did not run successfully.│ exit code: 1╰─> [7 lines of output]running bdist_wheelrunning buildrunning build_extLoading library to get build settings and version: libhdf5.soerror: Unable to load dependency HDF5, make sure HDF5 is installed properlyLibrary dirs checked: []error: libhdf5.so: cannot open shared object file: No such file or directory[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for h5py
Failed to build h5py
ERROR: Could not build wheels for h5py, which is required to install pyproject.toml-based projects

5.2 直接安装h5py - “Failed to build h5py”

$ sudo pip3 install h5py
Collecting h5pyUsing cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Requirement already satisfied: numpy>=1.17.3 in /usr/lib/python3/dist-packages (from h5py) (1.21.5)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... errorerror: subprocess-exited-with-error× Building wheel for h5py (pyproject.toml) did not run successfully.│ exit code: 1╰─> [75 lines of output]running bdist_wheelrunning buildrunning build_pycreating buildcreating build/lib.linux-aarch64-cpython-310creating build/lib.linux-aarch64-cpython-310/h5pycopying h5py/ipy_completer.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/__init__.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/h5py_warnings.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/version.py -> build/lib.linux-aarch64-cpython-310/h5pycreating build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/files.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/group.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/selections.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/compat.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/datatype.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/filters.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/attrs.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/dataset.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/vds.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/dims.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/base.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/selections2.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcreating build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5d_direct_chunk.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_objects.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_group.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file2.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5o.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/conftest.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dimension_scales.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset_swmr.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attrs_data.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_selections.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5z.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_completions.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dtype.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset_getitem.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_base.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_filters.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attrs.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5pl.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/common.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5t.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5f.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file_image.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_ros3.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_errors.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_datatype.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5p.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attribute_create.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_slicing.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_big_endian_file.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file_alignment.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dims_dimensionproxy.py -> build/lib.linux-aarch64-cpython-310/h5py/testscreating build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescreating build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_virtual_source.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_lowlevel_vds.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_highlevel_vds.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/data_files/vlen_string_dset_utc.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/vlen_string_s390x.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/vlen_string_dset.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filesrunning build_extLoading library to get build settings and version: libhdf5.soerror: Unable to load dependency HDF5, make sure HDF5 is installed properlyLibrary dirs checked: []error: libhdf5.so: cannot open shared object file: No such file or directory[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for h5py
Failed to build h5py
ERROR: Could not build wheels for h5py, which is required to install pyproject.toml-based projects

5.3 无头安装 - Headless installation

有待测试验证。

  • Jetson Orin Nano headless system installation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/22151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang——RPC

一. RPC简介 远程过程调用(Remote Procedure Call&#xff0c;RPC)是一个计算机通信协议。该协议运行运行于一台计算机的程序调用另外一台计算机的子程序&#xff0c;而程序员无需额外的为这个交互作用编程。如果涉及的软件采用面向对象编程&#xff0c;那么远程过程调用亦可称…

Thesios: Synthesizing Accurate Counterfactual I/O Traces from I/O Samples——论文泛读

ASPLOS 2024 Paper 论文阅读笔记整理 问题 在设计大规模分布式存储系统时&#xff0c;I/O活动的建模至关重要。具有代表性的/O跟踪&#xff0c;可以对现有硬件、配置和策略进行详细的性能评估。假设跟踪进一步支持分析假设情况&#xff0c;例如部署新的存储硬件、更改配置和修…

2.4 OpenCV随手简记(五)

一、图像翻转 第一个图像翻转&#xff0c;这个可是制作表情包的利器。 图像翻转在 OpenCV 中调用函数 flip() 实现&#xff0c;原函数如下&#xff1a; flip(src, flipCode, dstNone) src&#xff1a;原始图像。 flipCode&#xff1a;翻转方向&#xff0c; 如果 flipCode 为…

[Redis]List类型

列表类型来存储多个有序的字符串&#xff0c;a、b、c、d、e 五个元素从左到右组成了一个有序的列表&#xff0c;列表中的每个字符串称为元素&#xff0c;一个列表最多可以存储个元素。在 Redis 中&#xff0c;可以对列表两端插入&#xff08;push&#xff09;和弹出&#xff08…

【动手学深度学习】多层感知机之权重衰减研究详情

目录 &#x1f30a;1. 研究目的 &#x1f30a;2. 研究准备 &#x1f30a;3. 研究内容 &#x1f30d;3.1 多层感知机权重衰减 &#x1f30d;3.2 基础练习 &#x1f30a;4. 研究体会 &#x1f30a;1. 研究目的 防止过拟合&#xff1a;权重衰减和暂退法都是用来控制模型的复…

北大、腾讯强推!DynamiCrafter WebUI 在线教程,无需逐帧记录即可图片变视频

从史前时期开始&#xff0c;人类的祖先就曾以石为笔&#xff0c;在洞穴的石壁描绘出一系列野牛奔跑的分析图&#xff0c;壁画上的动物被叠加了多条腿&#xff0c;用来表现连贯的动作&#xff0c;这或许便是动态视频的最早雏形。 被焚之城的山羊陶碗 时光流转&#xff0c;最初&…

sqli-labs 靶场闯关基础准备、学习步骤、SQL注入类型,常用基本函数、获取数据库元数据

Sqli-labs的主要作用是帮助用户学习如何识别和利用不同类型的SQL注入漏洞&#xff0c;并了解如何修复和防范这些漏洞。 它提供了多个不同的漏洞场景&#xff0c;每个场景都代表了一个特定类型的SQL注入漏洞。 用户可以通过攻击这些场景来学习和实践漏洞利用技术&#xff0c;以及…

【数据结构】二叉树-堆

目录 一.树概念及性质 二.二叉树的概念与实现 三.堆的概念和结构 四.堆的实现 1.向下调整算法 2. 堆的创建 3.向上调整算法 4.堆的删除 五.堆排序 六.堆-源码 一.树概念及性质 树是一种非线性的数据结构&#xff0c;它是由数个节点组成的具有层次关系的集合。之所以叫…

干货 | SDR RFSoC技术框图大放送(附资源)

软件无线电(SDR) 本文参考《Software Defined Radio with Zynq UltraScale RFSoc》&#xff0c;全文共744页。需要的可以给公众号 迪普微科技 发送“SDR”。

【力扣】矩阵中的最长递增路径

一、题目描述 二、解题思路 1、先求出以矩阵中的每个单元格为起点的最长递增路径 题目中说&#xff0c;对于每个单元格&#xff0c;你可以往上&#xff0c;下&#xff0c;左&#xff0c;右四个方向移动。那么以一个单元格为起点的最长递增路径就是&#xff1a;从该单元格往上…

SpringBoot项目启动后访问网页显示“Please sign in“

SpringBoot启动类代码如下 SpringBoot项目启动后访问网页显示"Please sign in"&#xff0c;如图 这是一个安全拦截页面&#xff0c;即SpringSecurity认证授权页面&#xff0c;因为SecurityAutoConfiguration是Spring Boot提供的安全自动配置类&#xff0c;也就是说它…

城规跨考地信:你需要知道的几件事

24考研结束&#xff0c;25地信考研的小伙伴也开始准备。 在这期间发现一个现象&#xff0c;城规跨考GIS的讨论度非常高。 对这一点&#xff0c;我并不感到意外&#xff0c;因为随着地产行业的节节败退&#xff0c;很多单位不需要那么多规划人和建筑人&#xff0c;乃至土木人。…

SpringCloud 微服务中网关如何记录请求响应日志?

在基于SpringCloud开发的微服务中&#xff0c;我们一般会选择在网关层记录请求和响应日志&#xff0c;并将其收集到ELK中用作查询和分析。 今天我们就来看看如何实现此功能。 日志实体类 首先我们在网关中定义一个日志实体&#xff0c;用于组装日志对象 Data public class …

使用Java apache commons包五分钟搞定NCR解析(内附源码)

在网上看到很多关于解析NCR(Numeric Character Reference)字符串的java实现&#xff0c;核心都是通过自定义正则表达式来解析&#xff0c;其实org.apache.commons 已经为我们提供了jar包 解决该问题&#xff0c;非常的方便&#xff01;在这里我就来简单分享一下具体实现方法&am…

这就是英伟达 CEO 黄仁勋所说的人工智能“下一波浪潮”|TodayAI

在台湾一年一度的科技展 COMPUTEX 开幕前的周日&#xff0c;英伟达&#xff08;Nvidia&#xff09;首席执行官黄仁勋&#xff08;Jensen Huang&#xff09;表示&#xff0c;机器人和“理解物理定律的 AI”将成为下一波技术浪潮。他指出&#xff0c;英伟达目前正在推动生成式人工…

MyBatis核心对象

MyBatis核心类对象主要有俩个&#xff1a; 1&#xff1a;对相关配置文件信息进行封装的Configuration对象 2&#xff1a;用来执行数据库操作的Executor对象。 核心对象----存储类对象Configuration Configuration对象主要有三个作用&#xff1a; 1&#xff1a;封装MyBatis…

Pulsar 社区周报 | No.2024-05-30 | BIGO 百页小册《Apache Pulsar 调优指南》

“ 各位热爱 Pulsar 的小伙伴们&#xff0c;Pulsar 社区周报更新啦&#xff01;这里将记录 Pulsar 社区每周的重要更新&#xff0c;每周发布。 ” BIGO 百页小册《Apache Pulsar 调优指南》 Hi&#xff0c;Apache Pulsar 社区的小伙伴们&#xff0c;社区 2024 上半年度的有奖问…

AIGC和ChatGPT有什么区别?

AIGC和ChatGPT有什么区别? 首先先解释一下它们各自的概念 什么是AIGC AIGC&#xff0c;全称为Artificial Intelligence Generated Content&#xff0c;中文译为人工智能生成内容。这是一种利用人工智能技术自动生成内容的生产方式。例如&#xff0c;它可以创作出各种形式的内…

基于PHP+MySQL组合开发的同城便民小程序源码系统 房产出租+求职招聘+相亲交友 带完整的安装代码包以及搭建教程

系统概述 在当今信息化高速发展的时代&#xff0c;同城便民小程序已成为城市居民日常生活中不可或缺的一部分。为了满足广大用户的需求&#xff0c;小编给大家分享一款基于PHPMySQL组合开发的同城便民小程序源码系统。该系统集房产出租、求职招聘、相亲交友等多功能于一体&…

微信小程序使用echarts

思路 五个tab公用一个柱状图组件切换tab以及切换时间改变数据&#xff0c;传入子组件&#xff0c;子组件监听数据重新更新点击柱状图显示具体数值每个时间点有两个柱子&#xff08;高压和低压&#xff09;&#xff0c;柱状图显示高压的最大值到最小值的范围除了血压其余只有一…