0、为什么要研究大模型的评测?
- 首先,研究评测对于我们全面了解大型语言模型的优势和限制至关重要。尽管许多研究表明大型语言模型在多个通用任务上已经达到或超越了人类水平,但仍然存在质疑,即这些模型的能力是否只是对训练数据的记忆而非真正的理解。例如,即使只提供LeetCode题目编号而不提供具体信息,大型语言模型也能够正确输出答案,这暗示着训练数据可能存在污染现象。
- 其次,研究评测有助于指导和改进人类与大型语言模型之间的协同交互。考虑到大型语言模型的最终服务对象是人类,为了更好地设计人机交互的新范式,我们有必要全面评估模型的各项能力。
- 最后,研究评测可以帮助我们更好地规划大型语言模型未来的发展,并预防未知和潜在的风险。随着大型语言模型的不断演进,其能力也在不断增强。通过合理科学的评测机制,我们能够从进化的角度评估模型的能力,并提前预测潜在的风险,这是至关重要的研究内容。
- 对于大多数人来说,大型语言模型可能似乎与他们无关,因为训练这样的模型成本较高。然而,就像飞机的制造一样,尽管成本高昂,但一旦制造完成,大家使用的机会就会非常频繁。因此,了解不同语言模型之间的性能、舒适性和安全性,能够帮助人们更好地选择适合的模型,这对于研究人员和产品开发者而言同样具有重要意义。
1、OpenCompass介绍
上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。其主要特点如下:
- 开源可复现:提供公平、公开、可复现的大模型评测方案
- 全面的能力维度:五大维度设计,提供 70+ 个数据集约 40 万题的的模型评测方案,全面评估模型能力
- 丰富的模型支持:已支持 20+ HuggingFace 及 API 模型
- 分布式高效评测:一行命令实现任务分割和分布式评测,数小时即可完成千亿模型全量评测
- 多样化评测范式:支持零样本、小样本及思维链评测,结合标准型或对话型提示词模板,轻松激发各种模型最大性能
- 灵活化拓展:想增加新模型或数据集?想要自定义更高级的任务分割策略,甚至接入新的集群管理系统?OpenCompass 的一切均可轻松扩展!
2、大模型模型评测中的挑战
3、评测体系
4、架构
- 模型层:大模型评测所涉及的主要模型种类,OpenCompass 以基座模型和对话模型作为重点评测对象。
- 能力层:OpenCompass 从本方案从通用能力和特色能力两个方面来进行评测维度设计。在模型通用能力方面,从语言、知识、理解、推理、安全等多个能力维度进行评测。在特色能力方面,从长文本、代码、工具、知识增强等维度进行评测。
- 方法层:OpenCompass 采用客观评测与主观评测两种评测方式。客观评测能便捷地评估模型在具有确定答案(如选择,填空,封闭式问答等)的任务上的能力,主观评测能评估用户对模型回复的真实满意度,OpenCompass 采用基于模型辅助的主观评测和基于人类反馈的主观评测两种方式。
- 工具层:OpenCompass 提供丰富的功能支持自动化地开展大语言模型的高效评测。包括分布式评测技术,提示词工程,对接评测数据库,评测榜单发布,评测报告生成等诸多功能。