如何构建最小堆?

方式1:上浮调整

/*** 上浮调整(小的上浮)*/
public static void smallUp1(int[] arr, int child) {int parent = (child - 1) / 2;while (0 < child && arr[child] < arr[parent]) { // 0 < child说明这个节点还是叶子arr[child] = arr[child] ^ arr[parent];arr[parent] = arr[child] ^ arr[parent];arr[child] = arr[child] ^ arr[parent];child = parent;                             // 父节点此时开始视为子节点parent = (child - 1) / 2;                   // 算父节点的父节点}
}
/*** 上浮调整(小的上浮)*/
public static void smallUp2(int[] arr, int child) {int parent = (child - 1) / 2;int baseVal = arr[child];                       // 把处理的数据取出来while (0 < child && baseVal < arr[parent]) {arr[child] = arr[parent];                   // 父节点值挪下来,父节点为baseVal备选位置child = parent;parent = (child - 1) / 2;}arr[child] = baseVal;                           // baseVal上浮不动了,所以落在当前子节点位置
}

方式2:下沉调整

/*** 下浮调整(大的下沉)** @param arr    待调整的堆* @param parent 要下沉的父节点* @param length 堆的有效大小*/
public static void bigDown1(int[] arr, int parent, int length) {int child = 2 * parent + 1;while (child < length) { // 范围内if (child + 1 < length && arr[child + 1] < arr[child]) { // 取出两个子节点值最小的那个child++;}if (arr[parent] <= arr[child]) {       // 父节点比他们都小,则符合预期终止循环break;}arr[child] = arr[child] ^ arr[parent];arr[parent] = arr[child] ^ arr[parent];arr[child] = arr[child] ^ arr[parent];parent = child;                         // 此时子节点视为父节点继续下一步处理child = 2 * child + 1;}
}
/*** 下浮调整(大的下沉)** @param arr    待调整的堆* @param parent 要下沉的父节点* @param length 堆的有效大小*/
public static void bigDown2(int[] arr, int parent, int length) {int baseVal = arr[parent];int child = 2 * parent + 1;while (child < length) {if (child + 1 < length && arr[child + 1] < arr[child]) {child++;}if (baseVal <= arr[child]) {break;}arr[parent] = arr[child]; // 子节点小,则子节点位置上移parent = child;child = 2 * child + 1;}arr[parent] = baseVal;        // baseVal下沉不动了,所以落在当前子节点位置
}

构建最小堆

int[] arr = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};System.out.println("原始数据:" + Arrays.toString(arr));
for (int i = arr.length - 1; i >= 0; i--) {smallUp1(arr, i);
}
System.out.println("上浮构建最小二叉堆:" + Arrays.toString(arr));int[] arr2 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = arr2.length - 1; i >= 0; i--) {smallUp1(arr2, i);
}
System.out.println("上浮构建最小二叉堆:" + Arrays.toString(arr2));int[] arr11 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = (arr11.length - 1) / 2; i >= 0; i--) {bigDown1(arr11, i, arr11.length);
}
System.out.println("下沉构建最小二叉堆:" + Arrays.toString(arr11));int[] arr22 = {1, 3, 2, 9, 5, 7, 8, 6, 10, 0};
for (int i = (arr22.length - 1) / 2; i >= 0; i--) {bigDown2(arr22, i, arr22.length);
}
System.out.println("下沉构建最小二叉堆:" + Arrays.toString(arr22));原始数据:[1, 3, 2, 9, 5, 7, 8, 6, 10, 0]
上浮构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
上浮构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
下沉构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]
下沉构建最小二叉堆:[0, 1, 2, 6, 3, 7, 8, 9, 10, 5]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/19974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吊车近电报警器:各种高空作业车辆防触电事故设备

吊车近电报警器&#xff1a;各种高空作业车辆防触电事故设备 吊车近电报警器是专门用于防止大型高空作业车&#xff08;如吊车、起重机、消防车等&#xff09;在作业过程中触碰高压线路而引发事故的装置。该装置能够实时监测吊车与高压电线之间的距离&#xff0c;并在危险情况…

静态链表具体题目处理详解

题目 给出两条链表的首地址以及若干结点的地址、数据、下一个结点的地址&#xff0c;求两条链表的首个共用结点的地址。如果两条链表没有共用结点&#xff0c;则输出-1. 思路 &#xff08;1&#xff09;由于地址的范围很小&#xff0c;因此可以直接用静态链表&#xff0c;但…

计算机视觉与模式识别实验1-1 图像的直方图平衡

文章目录 &#x1f9e1;&#x1f9e1;实验流程&#x1f9e1;&#x1f9e1;1.读入图像‘rice.png’&#xff0c;在一个窗口中显示灰度级n64&#xff0c;128和256的图像直方图。2.调解图像灰度范围&#xff0c;观察变换后的图像及其直方图的变化。3.分别对图像‘pout.tif’和‘ti…

③单细胞学习-pbmc的Seurat 流程

目录 1&#xff0c;数据读取 2&#xff0c;线粒体基因查看 3&#xff0c;数据标准化 4&#xff0c;识别高变基因 5&#xff0c;进行数据归一化 6&#xff0c;进行线性降维 7&#xff0c;确定细胞簇 8&#xff0c;UMAP/tSNE降维&#xff08;保存pbmc_tutorial.rds&#…

mirth Connect 自定义JAVA_HOME

mirth Connect 自定义JAVA_HOME 1、背景 服务器上安装了两个不同版本的Java&#xff0c;我希望Mirth服务使用与默认系统不同的版本。自定义指定java版本 2、解决方法 2.1 优先级说明 系统变量JAVA_HOME (设置后&#xff0c;mirth会根据这个进行启动运行服务&#xff0c;优先级…

【火炬打宝策略】

打宝策略刷遗物&#xff1a; 时可4 只刷奇诊加稀有度&#xff0c;没有奇诊可以直接不打。

模型 STORY评估框架

说明&#xff1a;系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。故事五要素&#xff1a;结构、时间、观点、现实、收益 。 1 STORY评估框架的应用 1.1 STORY模型展示其个性化在线学习解决方案的优势 一家在线教育平台想要通过一个故事来展示其个性…

不是我愿意孤独,而是周围找不到同类

概述 首先&#xff0c;听到这句话的时候&#xff0c;是从《天道》的电视剧中听到的。 仔细翻阅后&#xff0c;发现&#xff0c;这句话出自尼采。 完整的表述是&#xff1a;独处的人不是因为他想孤独&#xff0c;而是因为在他的周围找不到他的同类~ 先不说是不是真有此句&…

gcc 内建函数示例 __builtin_return_address

1,理论未动&#xff0c;示例先行 hello_gcc_callstack.c #include <stdio.h>void do_backtrace() {void *pc0 __builtin_return_address(0);void *pc1 __builtin_return_address(1);void *pc2 __builtin_return_address(2);void *pc3 __builtin_return_address(3);…

【工具】Docker安装Jenkins并部署Java项目

【工具】Docker安装Jenkins并部署Java项目 文章目录 【工具】Docker安装Jenkins并部署Java项目1. 前置条件2. 安装3. 创建项目3.1 配置Maven3.2 构建项目3.3 自动部署 1. 前置条件 准备一台云服务器或本地虚拟机&#xff0c;保证必须要java环境&#xff0c;一键安装jdk&#x…

Spring 框架:Java 企业级开发的基石

文章目录 序言Spring 框架的核心概念Spring 框架的主要模块Spring Boot&#xff1a;简化 Spring 开发Spring Cloud&#xff1a;构建微服务架构实际案例分析结论 序言 Spring 框架自 2002 年发布以来&#xff0c;已经成为 Java 企业级开发的标准之一。它通过提供全面的基础设施…

相机等效焦距

1. 背景 物理焦距我们很熟悉,但是在接触实际的相机参数时,相机厂家会提到一个参数等效焦距,甚至有时候不提供物理焦距,这时候如果我们得到真实的物理焦距需要进行一定的转换.在介绍两者之间的转换关系前,先介绍一下等效焦距的由来. 如上图,假设在某一个镜头,其成像面会出现图…

C++ vector的使用和简单模拟实现(超级详细!!!)

目录 前言 1.STL是什么 2.vector使用 2.1 vector简介 2.2 常用接口函数 1. 构造函数 2.operator[ ]和size&#xff0c;push_back 3. 用迭代器进行访问和修改 4. 范围for遍历 5.修改类型函数 pop_back find insert erase 6. 容量相关函数capacity resize reserve 3.…

05.爬虫---urllib与requests请求实战(GET)

05.urllib与Requests请求实战GET 1.Urllib模块2.Requests模块3.对比4.实战 GET请求 Python中的GET请求也是HTTP协议中的一种请求方法&#xff0c;用于向服务器请求数据。与POST请求不同&#xff0c;GET请求将数据以查询字符串的形式附加在URL后面&#xff0c;而不是封装在请求体…

Windows10专业版系统安装Hyper-V虚拟机软件

Windows10专业版系统安装Hyper-V虚拟机软件 适用于在Windows10专业版系统安装Hyper-v虚拟机软件。 1. 安装准备 1.1 安装平台 Windows 10 1.2. 软件信息 软件名称软件版本安装路径windowswindows 10 专业版Hyper-vHyper-v 2. Hyper-v搭建 2.1打开cmd软件 2.2打开控制面…

20 厂商文档学习资料查询

01 厂商介绍 新华三&#xff08;H3C&#xff09; 新华三是一家专注于IT基础设施产品和解决方案的公司&#xff0c;提供从网络设备到数据中心解决方案的全套服务。它是中国领先的网络解决方案供应商之一&#xff0c;业务涵盖企业网、数据中心、云计算等多个领域。 华为&#x…

Golang dlv远程debug

1. 前期准备 1.1. dlv安装 1.1.1. go install安装 go install github.com/go-delve/delve/cmd/dlvlatest1.1.2. 手动安装 下载 linuxx86 架构 二进制文件 &#x1f4ce;dlv.linux.x86.zip zip文件&#xff0c;下载后&#xff08; 如果没权限&#xff0c;记得 执行chmod ax…

网络性能测试工具:iperf3介绍

文章目录 前言一、iperf3 的安装和使用下载和安装参数说明 二、iperf3 测试服务端启动客户端启动服务端输出反向测试客户端服务端 前言 新接触的网络环境如何评估网络带宽和吞吐量呢&#xff0c;有的项目没有对业务流量进行合理规划&#xff0c;服务或者中间件出口带宽经常有被…

Unity屏幕分辨率适配方法

Unity屏幕分辨率适配方法 在Unity中实现屏幕分辨率适配&#xff0c;可以使用以下几种方法&#xff1a; 1. 使用Canvas Scaler 创建Canvas&#xff1a; 在Unity编辑器中创建一个Canvas&#xff0c;它将自动添加一个Canvas Scaler组件。 设置Canvas Scaler&#xff1a; 选择Ca…

golang语言的gofly快速开发框架如何设置多样的主题说明

本节教大家如何用gofly快速开发框架后台内置设置参数&#xff0c;配置出合适项目的布局及样式、主题色&#xff0c;让你您的项目在交互上加分&#xff0c;也是能帮你在交付项目时更容易得到客户认可&#xff0c;你的软件使用客户他们一般都是不都技术的&#xff0c;所以当他们拿…