Llama模型家族训练奖励模型Reward Model技术及代码实战(一)

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)

利用人类反馈对大型语言模型进行微调的一种流行技术,称为基于人类反馈的强化学习,简称 RLHF。

RLHF 中的 LLM 权重更新由用户对 LLM 生成的完成给予的奖励(反馈)驱动。确定奖励是一项复杂的任务。一种方法是让人类根据某些对齐指标评估模型的所有完成情况,例如确定输出是否有用。此反馈是一个缩放量。然后迭代更新 LLM 权重,以最大化从人类分类器获得的奖励。

数据采集

获取人工反馈既耗时又费钱。作为一种解决方法,可以训练另一个称为奖励模型的模型,作为人工反馈的代理。奖励模型的目标是评估模型响应与人类偏好的一致程度。简单地说,奖励模型是一种以(提示,响应)对为输入,以奖励/分数为输出的模型。这可以表述为一个简单的回归或分类任务。构建这样一个模型的真正挑战是高质量的数据集。对好/坏的看法因人而异,将其映射到一个标量是不可行的。

在这里插入图片描述
一种解决方法是让标注员比较两个答案,然后决定哪一个更好。这种数据集称为比较数据集,每条记录包括(提示、选择的答案、拒绝的答案)。

在这里插入图片描述

训练

要训​​练奖励模型,比较数据集应采用 (提示、选择的响应、拒绝的响应) 格式,即优先选择。排序至关重要,因为它是设计奖励模型损失函数时的基本假设。可以使用任何可以接受可变长度文本输入并输出缩放值的模型。通常, 使用与 任务一致的 SFT 模型,并删除最后一个去嵌入层,同时在最后一层添加单个神经元作为缩放器输出。

在这里插入图片描述

对于每个时期, 对模型进行两次传递。

  • 在第一次传递中, 将提示和选择的响应输入到奖励模型,输出为 Rchosen。
  • 在第二次传递中,将相同的提示和被拒绝的响应一起输入。在这种情况下,输出为 Rrejected。

接下来,使用下面定义的损失函数来更新奖励模型。

在这里插入图片描述
损失函数背后的直觉是最大化选择答案分数和拒绝答案分数之间的差距。如果选择答案的奖励分数非常高,而拒绝答案的奖励分数很低,则损失为 0。

TRL 定制奖励模型

奖励模型是人类反馈的代理,它将(提示,响应)对作为输入并根据人类偏好返回分数。TRL 支持自定义奖励建模,任何人都可以在他们的数据集和模型上执行奖励建模。
在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/18174.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024最新升级Stable Diffusion整合包v4.6版来了,附赠SD电商实战教程

Stable Diffusion无疑是最近最火的AI绘画工具之一,本期设计软件库给大家带来了2024最新升级的v4.6版!比之前推送的更加智能、快速和简单 2024全新Stable Diffusion 资料包 新版本使用更方便 独家附赠SD电商实战教程 让你快速上手 资源目录一览 01 新…

Git——pull request详细教程

当我们需要协助其他仓库完成更改时,往往会用到git中的Pull Request操作,从而方便团队的协作管理和代码持续集成。 下面是详细的教程步骤。 一. Fork目标项目 比如说我现在要fork以下Qwen-VL的项目,如图所示: 随后点击Create即可…

PENDLE会是打响LSDFI赛道的第一枪吗?以bitget钱包为例

Pendle Finance是什么? PENDLE是Pendle Finance的原生通证,因此,在介绍Pendle币之前,我们需要对Pendle Finance有一个简单的了解。、 Pendle是一个建立在以太坊区块链上的无需许可的去中心化金融(DeFi)协议&#xff…

【东山派Vision K510开发板试用笔记】WiFi配网问题

目录 概述 WiFi配网的修改 悬而未决的问题 概述 最近试用了百问网提供的东山派Vision开发板,DongshanPI-Vision开发板是百问网针对AI应用开发设计出来的一个RSIC-V架构的AI开发板,主要用于学习使用嘉楠的K510芯片进行Linux项目开发和嵌入式AI应用开发…

使用PyInstaller打包一个包含多个文件的Python项目

使用PyInstaller打包一个包含多个文件的Python项目涉及以下几个步骤: 安装PyInstaller: 如果你还没有安装PyInstaller,可以通过pip安装: pip install pyinstaller编写.spec文件: PyInstaller允许你创建一个.spec文件来指定打包的详…

来自工业界的知识库 RAG 服务(二),RagFlow 源码全流程深度解析

背景介绍 前面介绍过 有道 QAnything 源码解析,通过深入了解工业界的知识库 RAG 服务,得到了不少调优 RAG 服务的新想法。 因此本次趁热打铁,额外花费一点时间,深入研究了另一个火热的开源 RAG 服务 RagFlow 的完整实现流程&…

1688 API接口介绍:开启您的电商新篇章

什么是1688 API接口? API(Application Programming Interface,应用程序编程接口)是一组协议和工具,用于定义不同的软件应用程序如何彼此交互。1688 API接口则是1688平台为商家提供的一套接口规范,允许商家…

使用FastAPI同时搭建WebSocket服务端和HTTP服务端

使用FastAPI搭建WebSocket服务端和HTTP服务端 1. WebSocket协议 WebSocket协议是一种在单个TCP连接上进行全双工通信的网络协议。它提供了双向通信的能力,允许服务器和客户端之间进行实时数据传输。与HTTP不同,WebSocket在连接建立后保持打开状态&…

网络工程师---第四十三天

1、网络地址转换请简述DNS服务器迭代查询与递归的区别? 2、请从技术方面简述RAIDO、RAID1、RAID3、 RAID5的特点? 3、请从层次结构、部署设备和功能配置方面描述层次化的网络结构? 4、请简述IPSECVPN和AH和ESP的区别? 5、请简述ID…

[Android]Mac电脑ADB使用

在Android开发中,ADB(Android Debug Bridge)是一个非常重要的工具,它提供了开发者与Android设备之间进行通信的多种方式。安装ADB对于任何进行Android开发的人来说都是必不可少的,尤其是在Mac电脑上进行开发时。 1. 安…

Java网络编程之TCP协议核心机制(三)

题外话 最近学习内容很多嗷 正题 延时应答机制 当客户端发送数据到服务器时,服务器不会立即返回ACK,而是等待一会再返回ACK 这段等待时间应用程序可能会消化掉接收缓冲区中的数据,当服务器返回ACK时,就会携带此时接收缓冲区大小的信息 当客户端下次再发送数据的时候就可以…

SQL 语言:数据操作

文章目录 SELECT 基本结构简单查询连接查询子查询聚集函数和更名操作分组查询字符串操作集合操作UNION 运算INTERSECT 运算EXCEPT 运算 视图查询和更新WITH 子句其他语句总结 SQL 的数据操作包括 SELECT(查询)、INSERT(插入)、DELETE(删除)和 UPDATE(修改)四条语句。 SELECT 基…

深度学习——自适应图片大小选择线宽和字体大小

不知道大家在可视化检测结果时是否会有设置的线宽太小在图片上画出来的框看不清楚,写的字符串看不清楚的烦恼。我发现不论是什么大小的图片,使用yolov5可视化线宽和字符串都能很清晰的显示出来,我根据yolov5上面的可视化代码,改写…

钡铼PLC集成BL121PO协议网关优化电子制造产线的生产效率

PLC转OPC UA协议转换网关BL121PO在电子制造产线中的优化应用,可以显著提高生产效率,促进生产线的智能化和信息化发展。本文将从以下几个方面进行阐述: 提高设备间通信效率:PLC转OPC UA协议转换网关BL121PO通过高效的协议转换&…

Flutter 中的 PositionedTransition 小部件:全面指南

Flutter 中的 PositionedTransition 小部件:全面指南 在 Flutter 中,PositionedTransition 是一个动画 widget,它允许你创建一个动画,使得一个子 widget 从屏幕的一个位置平滑过渡到另一个位置。这在实现各种动态布局变化时非常有…

SpringBoot基础篇

1:parent 目的:减少依赖配置 开发SpringBoot程序要继承spring-boot-starter-parentspring-boot-starter-parent中定义了若干个依赖管理继承parent模块可以避免多个依赖使用相同技术出现依赖版本冲突继承parent的形式也可以采用引入依赖的i形式实现效果…

就说说开一家公司的流程和成本

本人在进互联网公司和外企前,也和一位老板合作做,在一家小微公司里做过技术负责人,所以也了解开办一家公司的流程以及公司运作的成本。 通过本文大家其实能看到创业的难度。具体来讲,开办并维持着一家公司,其实需要操…

使用python写一个程序,持续监控某个windows进程的活动信息,例如占用cpu比例、占用内存等

使用python写一个程序,持续监控某个windows进程的活动信息,例如占用cpu比例、占用内存等 要持续监控某个Windows进程的活动信息,如CPU和内存占用,你可以使用psutil库。如果你还没有安装这个库,你可以使用pip进行安装&…

Python开发 —— 变量、全局变量函数的参数传递

1. Python变量 1.1 变量的定义和使用 在Python中,变量不需要显式声明。通过赋值语句,变量会自动创建。例如: x 10 y "Hello, World!"在这段代码中,x 被赋值为整数10,而 y 被赋值为字符串 "Hello, W…

SpringCloudOpenFeign的详解

1. SpringCloud OpenFeign的特性 1. 概念 Feign是一个声明式web Rest服务客户端。它使编写web服务客户端更容易要使用Feign,请创建一个接口并对其使用注解进行标注它具有可插入注释支持,包括Feign注释和JAX-RS注释Feign还支持可插拔编码器和解码器Spri…