【从浅学到熟知Linux】进程间通信之匿名管道方式(进程间通信方式汇总、匿名管道的创建、匿名管道实现进程池详解)

在这里插入图片描述

🏠关于专栏:Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程等内容。
🎯每天努力一点点,技术变化看得见

文章目录

  • 进程间通信介绍
    • 如何实现进程间通信
    • 进程间通信分类
  • 管道通信方式
    • 什么是管道
    • 匿名管道pipe
    • 匿名管道读写规则
    • 管道的特点
    • 匿名管道的应用——进程池


进程间通信介绍

如何实现进程间通信

  • 什么是通信?
    所谓通信,就是要实现两个或多个进程实现数据层面的交互。而在操作系统中,为了保持进程的独立性,不允许其他进程访问某个进程的地址空间。正因为进程独立性的存在,导致进程的通信成本比较高。(因为A进程无法直接将通信数据写入B进程的地址空间中,而需要通过在两进程外部创建某个空间来实现进程的通信,故成本较高)。
  • 为什么进程需要通信呢?
    ①数据传输:一个进程需要将它的数据发送给另一个进程;
    ②资源共享:多个进程之间共享同样的数据,当前进程需要将共享数据发送给需要该数据的进程;
    ③通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发送了某种事件(如:子进程退出时需要通知父进程);
    ④进程控制:有些进程希望完全控制另一个进程的执行,控制进程希望能够知道另一个进程的状态改变,通过状态来确定如何控制。
  • 实现进程间通信的思想是什么呢?
    ①进程间通信的本质,必须让不同的进程看到同一份进程外的“资源”(A进程向该资源写入信息,B进程从该资源中读取,从而实现通信);
    ②“资源”就是特定形式的内存空间;
    ③这个“资源”谁提供?一般是操作系统提供的第三方空间。
    ④由于该空间是操作系统提供的,则通信进程访问该空间进行通信,本质就是访问操作系统。进程处于用户,而“资源”属于操作系统,即内核级。故该“资源”从创建、使用、到释放,都需要操作系统参与,因而操作系统需要提供对应的系统调用。一般操作系统会提供一个独立的通信系统——LPC通信模块(隶属于文件系统)。

★ps:为什么不是通信的两个进程中的一个,提供通信的“资源”呢?如果由A进程提供,则该资源属于A进程。若想实现通信,则B进程也要访问这个空间,则会破坏进程独立性。

进程间通信分类

进程间通信方式可以分为3类:管道、System V IPC、POSIX IPC三种方式。其中,System V版本常用于本机进程间通信,而POSIX版本常用于网络中不同主机间的进程间通信。

以下是上述三类通信方式包含的具体通信形式↓↓↓

管道方式

● 匿名管道pipe
● 命名管道fifo

System V IPC

● System V消息队列
● System V共享内存
● System V信号量

POSIX IPC

● 消息队列
● 共享内存
● 信号量
● 互斥量
● 条件变量
● 读写锁

上述列出的各个通信形式,将于本文及后序文章中陆续介绍,本文先介绍匿名管道。

管道通信方式

什么是管道

管道是Unix操作系统中最古老的进程间通信方式,我们将一个进程链接到另一个进程的数据流缓冲区称为一个“管道”。

【示例】当我们执行ps axj | grep test.c的时候,ps axj的标准输出结果写入到内核的管道中,grep test.c从该内核管道获取输入,将将结果输出给用户显示器。

在这里插入图片描述
★ps:建立通信为什么那么费劲?因为进程具有独立性。

匿名管道pipe

在这里插入图片描述

创建匿名管道的系统调用原型为int pipe(int pipefd[2]);。参数pipefd是文件描述符数组,其中pipefd[0]表示读端,pipefd[1]表示写端。

在这里插入图片描述
从上图可以看出,当需要进行通信时,需要通过pipefd[1]文件描述符,将数据拷贝到管道文件中;再通过pipefd[0]文件描述符,将管道文件中的数据拷贝到用户空间中。因而,管道通信时,需要产生两次拷贝

下面是一个进程向管道内写入数据,并从管道内读取数据的代码↓↓↓

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>int main()
{int fds[2];pipe(fds);	//创建匿名管道//向匿名管道文件中写入数据char* msg = "Jammingpro";write(fds[1], msg, strlen(msg));//从匿名管道文件中读取输入char buffer[1024];ssize_t n = read(fds[0], buffer, sizeof(buffer));buffer[n] = '\0';printf("The info read from pipe is %s\n", buffer);return 0;
}

在这里插入图片描述

但我们创建匿名的目的是为了实现进程间的通信,在同一个进程内读写匿名管道文件并没有多大意义。由于匿名管道只能实现具有血缘关系的进程进行通信(如父子进程、兄弟进程、爷孙进程等具有血缘关系的进程),下面我们来探索父子进程如何进行匿名管道通信。↓↓↓

当父进程创建匿名管道时,则会在父进程的文件描述符表中,为匿名管道的读端和写端各分配一个文件描述符。
在这里插入图片描述
当父进程fork创建子进程时,子进程会继承父进程的文件描述符表,即子进程的3号和4号文件符和父进程一样,指向刚刚创建的匿名管道的读写端。
在这里插入图片描述

在这里插入图片描述
若我们希望子进程向父进程发送数据,则对于父进程来说,管道的写文件描述符的存在是没有意义的;对于子进程来说,管道的读文件描述符是没有意义的。我们可以将父进程的写文件描述符pipefd[1]和子进程读文件描述符pipefd[0]关闭。

在这里插入图片描述
在这里插入图片描述

下面我们实现一个子进程向父进程发送数据的代码↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>int main()
{int fds[2];pipe(fds);pid_t id = fork();if(id == 0)//子进程{close(fds[0]);int cnt = 10;while(cnt--){char buffer[1024];snprintf(buffer, sizeof(buffer), "%d->child process sending a message", cnt);write(fds[1], buffer, strlen(buffer));sleep(1);}close(fds[1]);exit(0);}//父进程close(fds[1]);char info[1024];while(true){ssize_t n = read(fds[0], info, sizeof(info) - 1);if(n != 0){info[n] = '\0';printf("get a info from child process! --> %s\n", info);}else{close(fds[0]);break;}}int status = 0;pid_t ret = waitpid(id, &status, 0);if(WIFEXITED(status)){printf("exitcode = %d, sig = %d\n", WEXITSTATUS(status), (status & 0x7F));}return 0;
}

在这里插入图片描述
上面代码中,子进程每间隔1秒向管道中写入一条数据,我们并没有对父进程做任何限制。但父进程却可以实现每隔一秒从管道中读取数据。并且,子进程在写入时,父进程并没有立即读取,而是等子进程写完才读取(如果子进程在写的时候,父进程就开始读,就会出现读取的数据不完整的情况)。

由上面代码执行结果可知,管道具有同步机制,即只有写端写入数据后,读端才能读取,读写存在先后顺序。当读写端均正常时,写端没有写入时,读端会阻塞等待。当写端文件描述符关闭时,读端read返回结果为0,表示读到文件末尾。

那如果我们让读端每隔1秒读一次,写端不限制,则会出现什么情况呢↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>int main()
{int fds[2];pipe(fds);pid_t id = fork();if(id == 0)//子进程{close(fds[0]);int cnt = 100;while(cnt--){char buffer[1024];snprintf(buffer, sizeof(buffer), "%d->child process sending a message", cnt);write(fds[1], buffer, strlen(buffer));}close(fds[1]);exit(0);}//父进程close(fds[1]);char info[1024];while(true){ssize_t n = read(fds[0], info, sizeof(info) - 1);if(n != 0){info[n] = '\0';printf("get a info from child process! --> %s\n", info);}else{close(fds[0]);break;}sleep(10);}int status = 0;pid_t ret = waitpid(id, &status, 0);if(WIFEXITED(status)){printf("exitcode = %d, sig = %d\n", WEXITSTATUS(status), (status & 0x7F));}return 0;
}

在这里插入图片描述
由上面程序执行结果可以看出,当读端没有读取匿名管道文件中的数据时,写端将匿名管道文件写满后,只能阻塞等待,待读端将数据读走后,才能继续写入。

由上面的程序执行结果我们可以得出,当读写端正常时,读端读的慢,则写端写满管道文件后会阻塞等待。

同时,从上面程序的执行结果来看。多次写入管道文件中的内容,被一次性读取出来,说明管道是基于字节流的。

那如果父进程的读端关闭,则写端会出现什么情况呢?↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>int main()
{int fds[2];pipe(fds);pid_t id = fork();if(id == 0)//子进程{close(fds[0]);int cnt = 100;while(cnt--){char buffer[1024];snprintf(buffer, sizeof(buffer), "%d->child process sending a message", cnt);write(fds[1], buffer, strlen(buffer));sleep(1);}close(fds[1]);exit(0);}//父进程close(fds[1]);char info[1024];int count = 0;while(true){ssize_t n = read(fds[0], info, sizeof(info) - 1);if(n != 0){info[n] = '\0';printf("get a info from child process! --> %s\n", info);}else{close(fds[0]);break;}if(count == 2){close(fds[0]);break;}count++;}int status = 0;pid_t ret = waitpid(id, &status, 0);if(ret > 0){printf("exitcode = %d, sig = %d\n", WEXITSTATUS(status), (status & 0x7F));}return 0;
}

在这里插入图片描述
上面程序中,当父进程读取3次管道文件内容后,将父进程的读端文件描述符关闭。由程序执行结果可以看到,子进程收到了13号信号,即SIGPIPE信号。

匿名管道读写规则

由上面的多个代码执行结果,我们可以得到如下结论↓↓↓

  1. 读写端正常,若管道如果为空,读端就要阻塞;
  2. 读写端正常,若管道如果被写满,写端被阻塞;
  3. 读端正常读,写端关闭,读端就会读到0,表明读到pipe文件末尾。这种情况,读端并不会阻塞。
  4. 写端正常写,读端关闭,操作系统会用13号信号SIGPIPE杀死系统中正在写入的进程。

多执行流共享,难免出现访问冲突。例如,A进程本想向管道中写入"Hello World",但当A进程写完"Hello"时,B进程就来读取,导致数据不完整。管道能提供协同机制(包含同步和互斥),对于同步来说,只有写端写入数据后,读端才能读取数据;对于互斥来说:先进来读写的进程要完成其读写任务后,下一个进程才能进行读写,不允许两个进程同时访问管道。

但对于管道的互斥机制来说,之后当管道内数据小于PIPE_BUF大小时,才能保证。当读写入的数据不大于PIPE_BUF时,Linux将可以保证写入的原子性,即保证写进程写入时没有进程读取,进程读取时没有其他进程写入。当读写数据大于PIPE_BUF大小时,Linux不再保证读写的原子性。

★ps:原子性操作表示只有两种结果的操作,这里的原子性读写操作表示读写成功或不进行读写。

管道的特点

  1. 具有血缘关系的进程才可以进行通信(常用于父子通信);
  2. 管道是半双工的,数据只能单向流动
  3. 父子进程是会进程协同的,匿名管道会提供同步与互斥机制——保护管道文件的数据安全;
  4. 管道提供面向流式的通信服务——面向字节流;
  5. 管道是基于文件的,而文件的生命周期是随进程的。当进程执行结束,则对应的匿名管道文件会被释放。

★ps:匿名管道只能让父子进程之间实现单向通信,如果我们需要实现双向通信,则需要使用两个管道。
在这里插入图片描述

★ps:如果两个进程不存在任何关系(不是父子进程、兄弟进程、爷孙进程等有血缘的关系),则这两个进程能不能通信呢?不能。进程之间必须有血缘关系,常用于父子进程。这种方式打开的管道文件,称为匿名管道。

管道是有固定大小的,不同内核里,大小可能有差异。我们可以使用ulimit -a查看当前系统中的匿名管道文件pipe的大小。↓↓↓在这里插入图片描述

匿名管道的应用——进程池

注意:进程池应用代码使用C++语言

当我们的系统中有大量的任务需要被处理时,我们可以将这些任务派发给各个子进程。但由于多次创建和销毁进程会带来较大的时间开销。我们可以通过提前创建一批子进程(避免需要时再创建),且子进程空闲时就阻塞等待(避免子进程执行完被销毁,下次需要子进程时还需要创建)。

实现上述需求时,我们需要借助匿名管道。通过在各个父子进程间建立匿名管道,实现父进程向指定子进程派发任务。↓↓↓

在这里插入图片描述
但需要注意的是,父进程不应该将大量任务集中派发给某个子进程,而让其他子进程处于空闲状态,这样会使得整机效率低下。我们可以通过轮询随机派发的方式给子进程派发任务,实现负载均衡。

要给子进程派发任务,我们就需要先拥有任务(Task.hpp)↓↓↓

#include <iostream>
#include <vector>typedef void(*func_t)();void task1()
{std::cout << "昭君一技能" << std::endl;
}void task2()
{std::cout << "回城中..." << std::endl;
}void task3()
{std::cout << "大招特效" << std::endl;
}void task4()
{std::cout << "暴君降临" << std::endl;
}void LoadTask(std::vector<func_t>& tasks)
{tasks.push_back(task1);tasks.push_back(task2);tasks.push_back(task3);tasks.push_back(task4);
}

当我们创建进程池时,需要保存各个子进程的写端、进程PID和进程名称(写端是必须保存的,后两者只是为了调试时方便),故我们可以创建一个channel类,用于保存子进程信息↓↓↓

//先描述
class channel
{
public:channel(int cmdfd, pid_t slaverid, std::string processname):_cmdfd(cmdfd),_slaverid(slaverid),_processname(processname){}int _cmdfd;      //发送任务的文件描述符pid_t _slaverid; //子进程的PIDstd::string _processname;    //子进程的名字——方便打印日志信息
};

下面给出子进程处理任务的函数(子进程fork之后循环执行该函数代码)↓↓↓

std::vector<func_t> tasks;void slaver()
{while(true){int cmdcode = 0;int n = read(0, &cmdcode, sizeof(int)); //如果父进程没有给子进程发送,子进程阻塞等待if(n == sizeof(int)){   std::cout << getpid() << "收到一个任务,并开始执行:" << std::endl;tasks[cmdcode]();}if(n == 0){close(0);std::cout << getpid() << " quit" << std::endl;break;}}exit(0);
}

下面我们就要开始编写主体逻辑了,即进程池↓↓↓

std::vector<func_t> tasks;
const int processNum = 5;	//进程池中进程个数void InitProcessPull(std::vector<channel> *channels)
{std::vector<int> wfd;for(int i = 0; i < processnum; i++){int pipefd[2];      //临时空间int n = pipe(pipefd);assert(!n);(void)n;wfd.push_back(pipefd[1]);pid_t id = fork();if(id == 0) //child{for(auto e : wfd) close(e);dup2(pipefd[0], 0);slaver();exit(0);}//fatherclose(pipefd[0]);//添加channel字段std::string name = "process-" + std::to_string(i);channels->push_back(channel(pipefd[1], id, name));}
}

下面函数用于给进程池中的进程派发任务↓↓↓

std::vector<func_t> tasks;
const int processNum = 5;
void distribute(const std::vector<channel>& channels)
{for(int i = 0; i < 10; i++){//1.选择任务int cmdcode = rand() % tasks.size();//2.选择进程int processpos = rand() % channels.size();//3.发送任务write(channels[processpos]._cmdfd, &cmdcode, sizeof(int));sleep(1);}
}

下面是最终的进程池代码↓↓↓

#include "Task.hpp"
#include <iostream>
#include <string>
#include <vector>
#include <cstdlib>
#include <cassert>
#include <ctime>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>const int processnum = 5;
std::vector<task_t> tasks;//先描述
class channel
{
public:channel(int cmdfd, pid_t slaverid, std::string processname):_cmdfd(cmdfd),_slaverid(slaverid),_processname(processname){}int _cmdfd;      //发送任务的文件描述符pid_t _slaverid; //子进程的PIDstd::string _processname;    //子进程的名字——方便打印日志信息
};void slaver()
{while(true){int cmdcode = 0;int n = read(0, &cmdcode, sizeof(int)); //如果父进程没有给子进程发送,子进程阻塞等待if(n == sizeof(int)){   std::cout << getpid() << "收到一个任务,并开始执行:" << std::endl;tasks[cmdcode]();}if(n == 0){close(0);std::cout << getpid() << " quit" << std::endl;break;}}exit(0);
}//输入:const &
//输出:*
//输入输出:&void InitProcessPull(std::vector<channel> *channels)
{std::vector<int> wfd;for(int i = 0; i < processnum; i++){int pipefd[2];      //临时空间int n = pipe(pipefd);assert(!n);(void)n;wfd.push_back(pipefd[1]);pid_t id = fork();if(id == 0) //child{for(auto e : wfd) close(e);dup2(pipefd[0], 0);slaver();exit(0);}//fatherclose(pipefd[0]);//添加channel字段std::string name = "process-" + std::to_string(i);channels->push_back(channel(pipefd[1], id, name));}
}void debug(std::vector<channel>& channels)
{for(auto &c : channels){std::cout << c._cmdfd << " " << c._slaverid << " " << c._processname << std::endl;}
}void distribute(const std::vector<channel>& channels)
{for(int i = 0; i < 10; i++){//1.选择任务int cmdcode = rand() % tasks.size();//2.选择进程int processpos = rand() % channels.size();//3.发送任务write(channels[processpos]._cmdfd, &cmdcode, sizeof(int));sleep(1);}
}void clean(const std::vector<channel>& channels)
{for(int i = 0; i < channels.size(); i++){close(channels[i]._cmdfd);waitpid(channels[i]._slaverid, NULL, 0);}// 方式1// for(int i = 0; i < channels.size(); i++)// {//     close(channels[i]._cmdfd);// }// sleep(2);// for(int i = 0; i < channels.size(); i++)// {//     waitpid(channels[i]._slaverid, NULL, 0);// }
}int main()
{srand(time(nullptr));   //种随机数种子LoadTask(&tasks);//在组织std::vector<channel> channels;//初始化InitProcessPull(&channels);//开始控制子进程//debug(channels);distribute(channels);//清理收尾clean(channels);return 0;
}

🎈欢迎进入从浅学到熟知Linux专栏,查看更多文章。
如果上述内容有任何问题,欢迎在下方留言区指正b( ̄▽ ̄)d

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/1803.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PMP®证书适合哪些岗位?哪些人适合报考?

PMP无处不在&#xff0c;不受岗位限制&#xff0c;因为项目管理思维都是相通的&#xff0c;就算你不想从事项目管理工作&#xff0c;也能应用到其他领域内。 当时报考PMP的人群中某些行业和岗位相对而言会多一些&#xff0c;本文就给大家介绍一下哪些行业、岗位的人群适合报考…

echarts折线图默认不显示数据圆点,鼠标划上之后折线图才显示圆点

只需要设置showSymbol为false就可以了&#xff0c;表示只在 tooltip hover 的时候显示。 代码如下&#xff1a; option {tooltip: {trigger: axis},xAxis: {type: category,data: [Mon, Tue, Wed, Thu, Fri, Sat, Sun]},yAxis: {type: value},series: [{data: [150, 230, 224…

Acrobat Pro DC 2021:强大的PDF编辑软件

Acrobat Pro DC 2021是Adobe公司推出的一款全面而强大的PDF编辑软件&#xff0c;凭借其卓越的性能和丰富的功能&#xff0c;成为了PDF编辑领域的领军者。 Acrobat Pro DC 2021中文激活版下载 这款软件具备全面的PDF编辑功能&#xff0c;包括文本编辑、图片处理、页面组织等&…

单例模式与反射创建对象

单例模式 饿汉式单例模式 单例模式&#xff0c;就是自己先把自己创建了&#xff0c;整个程序都只有这一个实例&#xff0c;别人都没有办法创建实例&#xff0c;因为他的构造方法是private的 一次性把全部都创建了 public class HungryMan {private static int [][] s new …

接口压力测试 jmeter--增强篇(二)

前期准备 1. JMeter的插件的安装 下载Jmeter Plugins Manager对插件进行管理 &#xff08;1&#xff09;下载地址&#xff1a;https://jmeter-plugins.org/install/Install/ &#xff08;2&#xff09;下载后&#xff0c;将jar包放到jmeter包目录下/lib/ext目录下 &#xff0…

CUDA编程---线程束洗牌指令

从Kepler系列的GPU&#xff08;计算能力为3.0或更高&#xff09;开始&#xff0c;洗牌指令&#xff08;shuffle instruction&#xff09;作为一种机制被加入其中&#xff0c;只要两个线程在相同的线程束中&#xff0c;那么就允许这两个线程直接读取另一个线程的寄存器。 洗牌指…

清华大学:序列推荐模型稳定性飙升,STDP框架惊艳登场

获取本文论文原文PDF&#xff0c;请公众号留言&#xff1a;论文解读 引言&#xff1a;在线平台推荐系统的挑战与机遇 在线平台已成为我们日常生活中不可或缺的一部分&#xff0c;它们提供了丰富多样的商品和服务。然而&#xff0c;如何为用户推荐感兴趣的项目仍然是一个挑战。…

【笔记】Telephony SIM SPN及运营商名称显示数据来源介绍

来源介绍 网络名称显示 来源及优先级&#xff08;高到低&#xff09; SourceCommentEnhanced Operator Name String(Eons) 名称信息存放&#xff1a; EF_PNN(PLMN Network Name, fid: 6FC5) &#xff1a;LAC和EF_PNN中的Record Identifier EF_OPL(Operator PLMN List, fid: 6FC…

67条tips实战案例渗透测试大佬的技巧总结

67条tips实战案例渗透测试大佬的技巧总结。 Tips 1. 手动端口探测 nmap的-sV可以探测出服务版本&#xff0c;但有些情况下必须手动探测去验证 使用Wireshark获取响应包未免大材小用&#xff0c;可通过nc简单判断 eg. 对于8001端口&#xff0c;nc连接上去&#xff0c;随便输…

GlobalFilter全局过滤器

这个跟跟刚才那个GatewatFilert默认全局配置的效果是一样的&#xff0c;但是那个是配置&#xff0c;只能使用已有的进行配置&#xff0c;GlobalFilter全局过滤器是通过类实现的 可以自己用代码实现拦截后要处理的逻辑。 定义方式&#xff1a; 先实现GlobalFilter接口&#xf…

深入C语言,发现多样的数据之枚举和联合体

一、枚举 枚举 是列出某些有穷序列集的所有成员的程序&#xff0c;或者是一种特定类型对象的计数。这两种类型经常&#xff08;但不总是&#xff09;重叠。是一个被命名的整型常数的集合。简单来说就将某种特定类型的对象一一进行列举&#xff0c;一一列举特定类型可能的取值。…

探索RadSystems:低代码开发的新选择(二)

系列文章目录 探索RadSystems&#xff1a;低代码开发的新选择&#xff08;一&#xff09;&#x1f6aa; 文章目录 系列文章目录前言一、RadSystems Studio是什么&#xff1f;二、用户认证三、系统角色许可四、用户记录管理五、时间戳记录总结 前言 在数字化时代&#xff0c;低…

【做一名健康的CSDNer】程序员哪几种行为最伤肾(程序员必看)

虽然没有专门针对程序员这一职业群体特有的伤肾行为的研究报道&#xff0c;但根据一般人群的健康风险和生活习惯&#xff0c;程序员由于其特殊的工作模式和环境&#xff0c;可能更容易出现如下伤肾的行为&#xff1a; 熬夜加班&#xff1a; 程序员由于项目进度、bug修复等原因&…

函数的创建和调用及删除

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 函数和存储过程非常类似&#xff0c;也是可以存储在 Oracle 数据库中的 PL/SQL代码块&#xff0c;但是有返回值。 可以把经常使用的功能定义为一个函数&#xff0c;就像系统…

数仓建模—逻辑数据模型

数仓建模—逻辑数据模型 数据模型是数据元素及其基于现实世界对象之间的关系的可视化表示。数据模型揭示并定义数据在业务流程中的连接方式,并支持创建高效的信息系统或应用程序。例如,在商业智能中,数据模型定义用户可以在其分析中使用哪种数据。 逻辑数据模型 (LDM Logi…

【C++ STL序列容器】array 数组

文章目录 【 1. 基本原理 】【 2. array 的创建 】2.1 不赋初值2.2 赋默认值2.3 赋指定值 【 3. array 的成员函数 】实例 【 1. 基本原理 】 array 是在 C 普通数组的基础上添加了一些成员函数和全局函数。在使用上&#xff0c;它 比普通数组更 安全&#xff0c;且效率并没…

以太网帧格式解析

以太网的正式标准是IEEE802.3&#xff0c;它规定了以太网传输的帧结构。 以太网帧格式如下图所示&#xff1a; 以太网传输数据时&#xff0c;是按照上图的格式&#xff0c;自左到右依次传输的。需要注意的是前导码和SFD不属于以太网协议的内容&#xff0c;应该是属于物理层数据…

学习ArkTS -- 状态管理

装饰器 State 在声明式UI中&#xff0c;是以状态驱动试图更新&#xff1a; 状态&#xff08;State&#xff09;&#xff1a;指驱动视图更新的数据&#xff08;被装饰器标记的变量&#xff09; 视图&#xff08;View&#xff09;&#xff1a;基于UI描述渲染得到用户界面 说明…

病理验证mIF和TMA路线(自学)

目录 技术 使用配对病理切片 mIF验证 单基因使用TMA验证 技术 多重荧光免疫组化技术 (Multiplex immunohistochemical&#xff0c;mIHC) 也称作酪氨酸信号放大 (Tyramide dignal amplification&#xff0c;TSA) 技术&#xff0c;是一类利用辣根过氧化酶 (Horseradish Pero…

weblogic反序列化漏洞(CVE-2017-10271)复现

直接用vuluhub搭建现成的靶场做 访问靶场 打开是这样表示成功 想反弹shell 就先开启kali1的nc监听&#xff0c;这就监听2233端口吧 linux&#xff1a;nc -l -p 2233 抓包修改为攻击数据包 ip和端口可以任意修改 反弹的shell 还可以写入文件shell 只需要把提供的poc POS…