Redis 主从复制、哨兵与集群

一、Redis 主从复制

1. 主从复制的介绍

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2. 主从复制的作用:

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

3. 主从复制流程:

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

4. 搭建 Redis 主从复制

主机IP地址所需软件包
Master:172.168.1.11redis-5.0.7.tar.gz
Slave1:172.168.1.12redis-5.0.7.tar.gz
Slave2:172.168.1.13redis-5.0.7.tar.gz

 1. 关闭防火墙与核心防护

systemctl stop firewalld
setenforce 0

2. 安装依赖环境

yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

3. 执行脚本文件

执行软件包提供的 install_server.sh 脚本文件设置 Redis 服务所需要的相关配置文件

cd /opt/redis-5.0.7/utils
./install_server.sh
......					#一直回车
Please select the redis executable path [ ] 
输入:/usr/local/redis/bin/redis-server#需要手动修改为 /usr/local/redis/bin/redis-server

解释:
Selected config:
Port           : 6379								#默认侦听端口为6379
Config file    : /etc/redis/6379.conf				#配置文件路径
Log file       : /var/log/redis_6379.log			#日志文件路径
Data dir       : /var/lib/redis/6379				#数据文件路径
Executable     : /usr/local/redis/bin/redis-server	#可执行文件路径
Cli Executable : /usr/local/bin/redis-cli			#客户端命令工具

4. 创建软连接

把redis的可执行程序文件放入路径环境变量的目录中便于系统识别

ln -s /usr/local/redis/bin/* /usr/local/bin/

5. 启动 Redis 服务

当 install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认监听端口为 6379

netstat -natp | grep redis#Redis 服务控制
/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status			#状态

6. 修改配置文件

修改配置 /etc/redis/6379.conf 参数

6.1 Master节点操作
vim /etc/redis/6379.confbind 0.0.0.0                   			    #70行,添加 监听的主机地址
daemonize yes								#137行,启用守护进程
logfile /var/log/redis_6379.log				#172行,指定日志文件
dir/var/lib/redis/6379                      #264行,默认工作目录
appendonly yes                              #700行,开启AOF持久化/etc/init.d/redis_6379 restart

 

6.2 Slave节点操作
vim /etc/redis/6379.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录		
replicaof 172.168.1.11 6379        #288行,指定要同步的Master节点IP和端口
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart
netstat -natp|grep redis

7. 验证主从效果

tail -f /var/log/redis_6379.log        #查看日志

7.1 在Master节点上验证从节点:
redis-cli info replication

测试

二、Redis 哨兵模式

1. 哨兵模式的介绍

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式原理:

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

哨兵模式的作用:

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成:

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
  • 数据节点:主节点和从节点都是数据节点。

2. 故障转移机制

1. 由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2. 当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

主节点的选举:

  1. 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
  2. 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
  3. 选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3. 搭建 Redis 哨兵模式

1. 修改 Redis 哨兵模式的配置文件(所有节点操作)

systemctl stop firewalld
setenforce 0vim /opt/redis-5.0.7/sentinel.conf
protected-mode no								#17行,关闭保护模式
port 26379										#21行,Redis哨兵默认的监听端口
daemonize yes									#26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"					#36行,指定日志存放路径
dir "/var/lib/redis/6379"						#65行,指定数据库存放路径
sentinel monitor mymaster 172.168.1.11 6379 2	#84行,修改 指定该哨兵节点监控172.168.1.11 6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000	#113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000		#146行,故障节点的最大超时时间为180000(180秒)

2. 启动哨兵模式

先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &

查看哨兵信息
redis-cli -p 26379 info Sentinel

4. 故障模拟

1. 查看redis-server进程号:

ps -ef | grep redis

2. 杀死 Master 节点上redis-server的进程号

kill -9 7905			
#Master节点上redis-server的进程号

3. 验证

方法一
tail -f /var/log/sentinel.log

方法二
redis-cli -p 26379 info Sentinel

三、Redis 群集模式

1. 集群的介绍

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

集群的作用:

  • 数据分区:数据分区(或称数据分片)是集群最核心的功能。
    • 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;
    • 另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
    • Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;
    • 例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
  • 高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

Redis集群的数据分片:

  • Redis集群引入了哈希槽的概念
  • Redis集群有16384个哈希槽(编号0-16383
  • 集群的每个节点负责一部分哈希槽
  • 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
以3个节点组成的集群为例:
  • 节点A包含0到5460号哈希槽
  • 节点B包含5461到10922号哈希槽
  • 节点C包含10923到16383号哈希槽

2. 搭建 Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

2.1 创建端口号文件

cd /etc/redis/
mkdir -p redis-cluster/redis600{1..6}

2.2 复制配置文件

for i in {1..6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600$i
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600$i
done

2.3 开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1							#69行,注释掉bind 项,默认监听所有网卡
protected-mode no						#88行,修改,关闭保护模式
port 6001								#92行,修改,redis监听端口,
daemonize yes							#136行,开启守护进程,以独立进程启动
cluster-enabled yes						#832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf		#840行,取消注释,群集名称文件设置
cluster-node-timeout 15000				#846行,取消注释群集超时时间设置
appendonly yes							#700行,修改,开启AOF持久化

2.4 启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conf或for d in {1..6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
done

查看节点
ps -ef | grep redis

2.5 启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。
下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

2.6 测试群集

[root@localhost redis6006]#redis-cli -p 6001 -c    #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots    #查看节点的哈希槽编号范围
1) 1) (integer) 109232) (integer) 16383            #哈希槽编号范围3) 1) "127.0.0.1"2) (integer) 6003            #主节点IP和端口号3) "59ab26229d3bf588be2be9d937d7800e95af5937"4) 1) "127.0.0.1"2) (integer) 6005            #从节点IP和端口号3) "20299799be987c186033688617e98a23f3574d9f"
2) 1) (integer) 54612) (integer) 109223) 1) "127.0.0.1"2) (integer) 60023) "8d09612c2358b1f467d2dbf377c9f81a53f7cc4d"4) 1) "127.0.0.1"2) (integer) 60043) "b54d383c9ca7caa917edcb0c3d5b53a0b57e22ed"
3) 1) (integer) 02) (integer) 54603) 1) "127.0.0.1"2) (integer) 60013) "5bbbcdcf429bec423ff0ab2c6c4042133e66445d"4) 1) "127.0.0.1"2) (integer) 60063) "8cd9ce4ab3c801268aacdba4d1306eeeb27e4d4b"
127.0.0.1:6001> 

127.0.0.1:6004> cluster keyslot name					#查看name键的槽编号[root@localhost redis6006]#redis-cli -p 6004 -c
127.0.0.1:6004> keys *        #对应的slave节点也有这条数据,但是别的节点没有
1) "name"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/14089.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

现在的年轻人,怎么这么要脸?

从5月初到现在,在你的社交圈,一定看到过这样「灰头土脸」的照片吧!从朋友圈到微博、到QQ、到Soul,一夜之间,小柴的社交圈像是刮了一场「沙尘暴」。 简直是「丑」到了所有人的心坎里!所有人乐此不疲地把自己…

java+Angular+Nginx+原生HTML+JS+CSS+Jquery融合B/S版电子病历系统云HIS系统源码

javaAngularNginx原生HTMLJSCSSJquery融合B/S版电子病历系统云HIS系统源码 Java版云HIS系统融合电子病历系统,是医学专用软件。医院通过电子病历以电子化方式记录患者就诊的信息,包括:首页、病程记录、检查检验结果、医嘱、手术记录、护理记录…

高性能推理框架漫谈

传统模型分布式推理框架 Tensorflow servingPytorch ServingTriton Server 大语言模型的推理框架 其中, VLLM 后端接入了Ray 框架, 作为调度请求的分发处理;除此之外,还包括Nvidia 最新推出的TensorRT-LLM, 增加了对…

【制作100个unity游戏之28】花半天时间用unity复刻童年4399经典小游戏《黄金矿工》(附带项目源码)

最终效果 文章目录 最终效果前言素材模拟绳子钩子来回摆动发射回收钩子方法发射钩子回收钩子勾取物品随机生成物品其他源码完结 前言 在游戏发展史上,有些游戏以其简单而耐玩的特性,深深地烙印在了玩家的记忆中。《黄金矿工》就是其中之一,它…

数据管理.

1 概述 在移动互联网蓬勃发展的今天,移动应用给我们生活带来了极大的便利,这些便利的本质在于数据的互联互通。因此在应用的开发中数据存储占据了非常重要的位置,HarmonyOS应用开发也不例外。 本文将为您介绍HarmonyOS提供的数据管理能力之一首选项。 2 什么是首选项 首选…

剧本杀小程序开发:数字化发展下的行业优势

跟着好友一起约着去玩剧本杀,这已经成为了年轻人社交休闲的新方式。如今,数字化的应用为剧本杀行业带来了全新的生命力。剧本杀开始向线上发展,利用各种技术,让玩家在手机上体验到虚拟游戏带来的乐趣。 线上剧本杀摆脱了时间空间…

【动态规划七】背包问题

目录 0/1背包问题 一、【模板】01背包 二、分割等和子集 三、目标和 四、最后一块石头的重量 II 完全背包问题 一、【模板】完全背包 二、零钱兑换 三、零钱兑换 II 四、完全平方数 二维费用的背包问题 一、一和零 二、盈利计划 似包非包 组合总和 卡特兰数 不…

AI大模型应用开发实践:4.基于 Chat Completions API 实现外部函数调用

基于 Chat Completions API 实现外部函数调用 2023年6月20日,OpenAI 官方在 Chat Completions API 原有的三种不同角色设定(System, Assistant, User)基础上,新增了 Function Calling 功能。 详见OpenAI Blog functions 是 Chat Completion API 中的可选参数,用于提供…

matlab使用教程(80)—修改图形对象的透明度

1.更改图像、填充或曲面的透明度 此示例说明如何修改图像、填充或曲面的透明度。 1.1坐标区框中所有对象的透明度 透明度值称为 alpha 值。使用 alpha 函数设置当前坐标区范围内所有图像、填充或曲面对象的透明度。指定一个介于 0(完全透明)和 1&#x…

15.回归问题

回归问题是机器学习领域中的核心问题之一,它旨在通过拟合数据点来建立数学模型,以预测因变量的值。回归问题不仅广泛应用于金融、医疗、工程等领域,也是数据分析和机器学习算法研究的重要基础。本文将深入探讨回归问题的基本概念、数学原理、…

软件设计师-上午题-计算题汇总

一、存储系统 - 存储容量计算(字节编址、位编址、芯片个数) 内存地址是16进制 内存地址编址的单位是Byte,1K1024B 1B 8 bit 1.计算存储单元个数 存储单元个数 末地址 - 首地址 1 eg. 按字节编址,地址从 A4000H 到 CBFFFH&…

ubuntu20.04 10分钟搭建无延迟大疆无人机多线程流媒体服务器

1.使用效果 无人机画面 2.服务器视频端口 3.使用教程 3.1.下载ubuntu对应软件包:系统要求ubuntu16以上 3.2修改端口(config.xml文件) 3.3启动服务 目录下输入:终端启动:./smart_rtmpd 后台启动:nohup ./…

安卓手机APP开发__平台的架构

安卓手机APP开发__平台的架构 目录 概述 安卓软件栈 Linux内核 硬件抽象层(HAL) 安卓运行时 原生的C/C代码库 Java API框架 系统APP 概述 安卓是一个开源的,基于Linux的软件栈,它创建一个设备和形式因素的很宽的矩阵。 下图展示了安卓平台的所有…

Kubernetes的灵魂核心:kube-scheduler

Kubernetes(简称K8s)是一个开源的容器编排系统,用于自动化容器化应用程序的部署、扩展和管理。在Kubernetes集群中,kube-scheduler是一个至关重要的组件,它负责将Pod(Kubernetes中的最小部署单元&#xff0…

2024年电工杯高校数学建模竞赛(A题) 建模解析| 园区微电网风光储协调优化配置 |小鹿学长带队指引全代码文章与思路

我是鹿鹿学长,就读于上海交通大学,截至目前已经帮200人完成了建模与思路的构建的处理了~ 本篇文章是鹿鹿学长经过深度思考,独辟蹊径,实现综合建模。独创复杂系统视角,帮助你解决电工杯的难关呀。 完整内容可…

Anti Desgin Vue 实现 表格可编辑、新增、删除功能

1、效果图 新增&#xff1a; 删除&#xff1a; 修改&#xff1a; 代码&#xff1a; <template><div><button click"add">添加</button><span style"margin-left: 8px"><template v-if"hasSelected">{…

C++语言基础光速入门笔记

目录 从C到CC和C语言的关系C编译器C面向对象程序设计标准库ANSI 标准C的使用场景标准化 安装 GNU 的 C/C 编译器g 应用说明g 常用命令选项 C 基本语法C 关键字三字符组 C 数据类型基本的内置类型typedef 声明枚举类型类型转换静态转换&#xff08;Static Cast&#xff09;动态转…

沃通国密根证书入根红莲花浏览器,共建国密HTTPS应用生态

近日&#xff0c;沃通CA与海泰方圆红莲花安全浏览器进一步达成合作&#xff0c;沃通新增国密根证书入根红莲花安全浏览器。此次入根合作&#xff0c;标志着沃通国密数字证书产品兼容性再次得到提升&#xff0c;进一步夯实国密应用根基。 沃通CA入根红莲花浏览器&#xff0c;自动…

手机端如何访问本地vue+vite项目,实现实时调试?

一、应用场景 h5&#xff08;vuevite&#xff09;嵌入app后&#xff0c;出现某种问题时&#xff0c;需要每次发布坏境后&#xff0c;才能才看效果&#xff0c;这种来回很耗时间&#xff0c;本文章在于解决手机端直接访问本地启动应用项目&#xff0c;无需重复发布坏境 二、实…

四川易点慧电商抖音小店未来商业新蓝海

在数字经济的浪潮中&#xff0c;电商行业日新月异&#xff0c;不断涌现出新的商业模式和平台。四川易点慧电商抖音小店作为其中的佼佼者&#xff0c;以其独特的商业模式和广阔的市场前景&#xff0c;正成为越来越多创业者和商家的首选。本文将从多个角度探讨四川易点慧电商抖音…