红黑树底层封装map、set C++

目录

一、框架思考

三个问题

问题1的解决

问题2的解决:

问题3的解决:

二、泛型编程

1、仿函数的泛型编程

2、迭代器的泛型编程

3、typename:

4、++/--重载

三、原码

红黑树

map

set


一、框架思考

map和set都是使用红黑树底层,要怎么实现同一个底层,但是实现不同的功能呢?

三个问题


1、map是pair模型,而set是key模型

2、map和set的迭代器用法是一样的,如何实现?

3、插入时,set和map插入的类型不同,如何实现?

我们是一个简单的实现,而不是全部,所以抓重点,化繁为简
只关注和当前我么要实现功能有关系的部分,其他的统统不关注

问题1的解决


RBTree的节点传的是一个模板

template<class T>
struct BRTreeNode
{BRTreeNode<T>* _parent;BRTreeNode<T>* _right;BRTreeNode<T>* _left;T _data;Colour _col;BRTreeNode(const T& data):_parent(nullptr), _right(nullptr), _left(nullptr), _data(data), _col(RED){}};

map传<K,pair<K,V>>
set传<K,K>

我set要用的是key模型的BRTree,所以传的是<K,K>
我map要的是key-value模型的BRTree,所以传的是<K,pair<K,V>>
对应的BRTree传对应的模板到Node,实现不同类型的Node节点

问题2的解决:

map和set底层都是红黑树,其行为都是一致的,问题在于节点数据类型的不同,所以,红黑树的底层迭代器实现都是一样的,设置为模板,因此和问题1的解决思路是一致的。

问题3的解决:


set和map的比较不一样
set的比较是直接key,而map的比较是用kv.first
不确定是map还是set,不能写死,怎么办?
可以写一个内部类的仿函数
这个仿函数,对于set返回的是其key值
对于map返回的是其kv.first值
仿函数是一个强大的功能,你想怎么实现就怎么实现

模板写成一样的,功能是一样的,但是不同的对象类具体实现不同的功能

具体解决请看以下的泛型编程过程

二、泛型编程

1、仿函数的泛型编程


set和map的key值不一样
如何使用同一份红黑树实现不同的比较逻辑?
当对红黑树实例化时,多传一个参数,即仿函数
在红黑树底层使用一个模板仿函数
在各自的map和set写好各自的类,用于模板仿函数的实例化
这样,虽然在底层,仿函数的行为都是一致的
但是,因为模板参数不同,其返回值也就不同

set的仿函数:

	struct  SetKeyOfT{const K& operator()(const K& key){return key;}};

map的仿函数:

		struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};

红黑树部分的仿函数

		KeyOfT kot;kot(data)


2、迭代器的泛型编程

set和map有各自的数据类型
但是器迭代器的形式是一样的
如何做到?
迭代器实现,实在红黑树部分实现的
将之设置为模板
传set,就是se对应的迭代器
传map,就是map对应的迭代器

set的迭代器:

	typedef typename BRTree<const K,  K, SetKeyOfT>::Iterator iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}

map的迭代器:

	typedef typename BRTree<K, pair< K, V>, MapKeyOfT>::Iterator iterator;iterator begin(){return _t.Begin();}iterator end(){return  _t.End();}

红黑树的迭代器:

//迭代器
//referrence :引用
template<class T, class Ptr, class Ref>//迭代器模板:数据类型、指针类型、解引用
struct __RBTreeiterator
{typedef BRTreeNode<T> Node;typedef __RBTreeiterator<T, Ptr, Ref> Self;//这个迭代器的对象Node* _node;__RBTreeiterator( Node* node):_node(node){}//解引用Ref operator*(){return _node->_data;}//->Ptr operator->(){return &_node->_data;}//比较bool operator!=(const Self& s)//比较的是两个迭代器对象,参数是另外一个迭代器对象{return  _node != s._node;}//++Self& operator++(){if (_node->_right)//如果右孩子不为空,找到右子树最小孩子{Node* leftMin = _node->_right;while (leftMin->_left){leftMin = leftMin->_left;}_node = leftMin;}else//右孩子为空{Node* cur = _node;Node* parent = _node->_parent;while (parent && cur == parent->_right)//当孩子作为父亲的左,这个父亲就是要访问的节点{cur = parent;parent = parent->_parent;}_node = parent;}return *this;//this为这个对象指针}};

一般的迭代器的功能:
解引用*
指针访问->
比较相等
++
--

3、typename:

在没有实例化的对象,访问其内嵌类型 
会出现分不清楚的问题:
因为静态成员、内部类、内部成员的访问都可以使用类域的方式去访问
没有实例化,就不知道访问哪一个 

在没有实例化模板的类对象去取器内嵌类型时,加一个typename
意义就是告诉编译器,等到实例化的时候再去找对应的内嵌类型

4、++/--重载

红黑树采用的是中序遍历
中序遍历,++返回的是当前节点中序遍历的下一个节点
顺序是:左,根、右
因此,需要分情况
如果当前节点有右孩子,那就是右孩子的最左节点

如果当前节点没有右孩子,那么说明自己这棵子树已经访问完毕
需要访问该子树的父亲,因为该子树是作为父亲的左孩子
按照中序遍历的思想,左子树访问完毕,接下来要访问的就是根

红黑树

#pragma once
#pragma once
#include<vector>
#include<iostream>
using namespace std;enum Colour
{BLACK,RED
};//node实例化,只给一个T
template<class T>
struct BRTreeNode
{BRTreeNode<T>* _parent;BRTreeNode<T>* _right;BRTreeNode<T>* _left;T _data;Colour _col;BRTreeNode(const T& data):_parent(nullptr), _right(nullptr), _left(nullptr), _data(data), _col(RED){}};//迭代器
//referrence :引用
template<class T, class Ptr, class Ref>//迭代器模板:数据类型、指针类型、解引用
struct __RBTreeiterator
{typedef BRTreeNode<T> Node;typedef __RBTreeiterator<T, Ptr, Ref> Self;//这个迭代器的对象Node* _node;__RBTreeiterator( Node* node):_node(node){}//解引用Ref operator*(){return _node->_data;}//->Ptr operator->(){return &_node->_data;}//比较bool operator!=(const Self& s)//比较的是两个迭代器对象,参数是另外一个迭代器对象{return  _node != s._node;}//++Self& operator++(){if (_node->_right)//如果右孩子不为空,找到右子树最小孩子{Node* leftMin = _node->_right;while (leftMin->_left){leftMin = leftMin->_left;}_node = leftMin;}else//右孩子为空{Node* cur = _node;Node* parent = _node->_parent;while (parent && cur == parent->_right)//当孩子作为父亲的左,这个父亲就是要访问的节点{cur = parent;parent = parent->_parent;}_node = parent;}return *this;//this为这个对象指针}};template<class K, class T, class KeyOfT>
class BRTree
{typedef BRTreeNode<T> Node;
public:typedef  __RBTreeiterator<T, T*, T&>Iterator;//提供迭代器接口Iterator Begin(){Node* leftMin = _root;while (leftMin && leftMin->_left)//如果为空,直接返回{leftMin = leftMin->_left;}//返回一个迭代器//return leftMin;单参数的构造函数支持隐式类型转换return Iterator(leftMin);}Iterator End(){//遍历,要访问到最大的值为止//一般end位置为空return Iterator(nullptr);}bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* cur = _root;Node* parent = nullptr;while (cur){//现在,不知道是k还是k-v模型//set访问的直接是key,而map访问的.first//所以,对应不同的返回值,仿函数解决if (kot(data) < kot(cur->_data)){parent = cur;cur = cur->_left;}else if (kot(data) > kot(cur->_data)){parent = cur;cur = cur->_right;}else//找到相等key{return false;}}cur = new Node(data);cur->_col = RED;if (kot(data) < kot(parent->_data))//插入左{parent->_left = cur;}else //插入右{parent->_right = cur;}cur->_parent = parent;//插入之后,要进行颜色调整while (parent && parent->_col == RED)//如果为空/黑色节点,直接结束{//Node* grandfather = parent->_parent;if (parent == grandfather->_left)//p为左,u为右{Node* uncle = grandfather->_right;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_left){//		   g//	   p      u//  c//RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   p      u//      c//RotateL(parent);//		   g//	   c      u//  p//RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//p为右,u为左{Node* uncle = grandfather->_left;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_right){//		   g//	   u      p//					c//RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   u      p//          c//RotateR(parent);//		   g//	   u      c//  				p//RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}//右旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)//subLR可能为空{subLR->_parent = parent;}subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;//注意修改顺序if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}//左旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}//检查平衡bool isBalance(){if (_root->_col == RED){return false;}//找到任意一条路黑色节点个数Node* cur = _root;int refNum = 0;while (cur){if (cur->_col == BLACK){refNum++;}cur = cur->_left;}return Check(_root, 0, refNum);return 1;}void Inoder(){_Inoder(_root);cout << endl;}private:bool Check(Node* root, int blackNum, const int refNum){//到路径结束位置检查黑色节点if (root == nullptr){if (blackNum != refNum){cout << "黑色节点不相等" << endl;return false;}// << blackNum << endl;return true;}//检查红色节点if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "连续红节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _Inoder(const Node* root){if (root == nullptr){return;}_Inoder(root->_left);cout << root->_kv.first << ":" << _root->_kv.second << endl;_Inoder(root->_right);}private:Node* _root = nullptr;};

map

#pragma once
#include"BRTree.h"//对map的封装namespace myNameSpace
{template<class K, class V>class map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public://插入bool insert(const  pair <K, V>& kv){return _t.Insert(kv);}//封装红黑树的迭代器typedef typename BRTree<K, pair< K, V>, MapKeyOfT>::Iterator iterator;iterator begin(){return _t.Begin();}iterator end(){return  _t.End();}BRTree< K, pair <K, V>, MapKeyOfT> _t;};void test_map(){/*map<int, int> m;m.insert({1,1});m.insert({2,2});m.insert({3,1});m.insert({7,1});map<int,int>::iterator it = m.begin();while (it != m.end()){cout << it->first << ":" << it->second << endl;++it;}cout << endl;*/map<string, int> m1;m1.insert({ "hello",1});m1.insert({ "world",2});m1.insert({ "find",1});m1.insert({ "peace",1});map<string, int>::iterator it1 = m1.begin();while (it1 != m1.end()){cout << it1->first << ":" << it1->second << endl;++it1;}cout << endl;}}

set

#pragma once
#include"BRTree.h"namespace myNameSpace {template<class K>class set {struct  SetKeyOfT{const K& operator()(const K& key){return key;}};public:bool insert(const K& key){return _t.Insert(key);}//对于红黑树的迭代器,需要实例化红黑树的迭代器//所以需要在红黑树的基础上封装迭代器typedef typename BRTree<const K,  K, SetKeyOfT>::Iterator iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}private:BRTree<const K,K, SetKeyOfT> _t;};void test_set(){set<int> s;s.insert(1);s.insert(2);s.insert(4);s.insert(7);s.insert(8);s.insert(9);set<int>::iterator it = s.begin();while (it != s.end()){cout << *it << " ";++it;}cout << endl;}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/13177.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新人学习笔记值(初始JavaScript)

一、Java Script是什么 1.Java Script是世界上最流行的语言之一&#xff0c;是一种运行在客户端的脚本语言&#xff08;script是脚本的意思&#xff09; 2.脚本语言&#xff1a;不需要编译&#xff0c;运行过程中由js解释器&#xff08;js引擎&#xff09;进行解释并运行 3.现在…

Vue原理学习:vdom 和 diff算法(基于snabbdom)

vdom 和 diff 背景 基于组件化&#xff0c;数据驱动视图。只需关心数据&#xff0c;无需关系 DOM &#xff0c;好事儿。 但是&#xff0c;JS 运行非常快&#xff0c;DOM 操作却非常慢&#xff0c;如何让“数据驱动视图”能快速响应&#xff1f; 引入 vdom 用 vnode 表示真实…

联合新能源汽车有限公司出席2024年7月8日杭州快递物流展

参展企业介绍 青岛联合新能源汽车有限公司&#xff08;简称&#xff1a;联合汽车&#xff09;&#xff0c;是一家专注于纯电动汽车领域创新的科技公司&#xff0c;在国内率先提出车电分离&#xff0c;电池标准化并共享的方案&#xff0c;研发了包含标准电池、电池仓、可换电纯电…

Bootstrap Studio for Mac:打造专业级网页设计软件

对于追求高效与品质的设计师和开发者来说&#xff0c;Bootstrap Studio for Mac无疑是最佳选择。它建立在广受欢迎的Bootstrap框架之上&#xff0c;输出干净、语义化的HTML代码。同时&#xff0c;强大的CSS和SASS编辑器&#xff0c;支持自动建议和规则验证&#xff0c;让您的设…

深度学习500问——Chapter08:目标检测(9)

文章目录 8.5 目标检测的技巧汇总 8.5.1 Data Augmentation 8.5.2 OHEM 8.5.3 NMS&#xff1a;Soft NMS/ Polygon NMS/ Inclined NMS/ ConvNMS/ Yes-Net NMS/ Softer NMS 8.5.4 Multi Scale Training/Testing 8.5.5 建立小物体与context的关系 8.5.6 参考relation network 8.5.…

QCustomplot---动态图

QCustomplot绘制动态曲线图-游标及鼠标跟踪显示数值_qcustomplot 游标-CSDN博客 m_timer new QTimer(this);connect(m_timer,SIGNAL(timeout()),this,SLOT(slotTimeout()));m_timer->start(50); void MainWindow::slotTimeout() {static int p0;static int i0;double m,m1…

简单聊聊分布式和集群

前言 分布式和集群&#xff0c;我们都听的比较多&#xff0c;分布式系统和集群的概念对于刚进入职场的小伙伴可能不是很清楚&#xff0c;这篇文章我们就一起看看两者到底是什么&#xff0c;有什么区别。 什么是分布式系统&#xff1f; 先看下书面解释&#xff1a; 分布式系统…

Milvus的系统架构

简介 Milvus的构建在许多知名的向量搜索库比如Faiss, HNSW, DiskANN, SCANN等之上的&#xff0c;它针对稠密向量数据集的相似搜索而设计&#xff0c;能支持百万、十亿甚至万亿级别的向量搜索。 Milvus支持数据分片&#xff0c;流式数据插入&#xff0c;动态schema&#xff0c…

STM32手写寄存器的方式实现点亮LED灯

这次是从头开始学习STM32&#xff0c;看野火的视频开始学习&#xff0c;感觉需要记录的时候就要记录一下学习的心得。野火视频学习的老师讲的还是很到位的&#xff0c;能够学习到很多的细节之处&#xff0c;有时会感觉很啰嗦&#xff0c;但是不得不说确实很详细&#xff0c;只有…

线程池 ThreadPool

一般情况下我们都使用Thread类创建线程&#xff0c;因为通过Thread对象可以对线程进行灵活 的控制。但过多创建线程和销毁线程&#xff0c;会消耗掉大量的内存和CPU资源&#xff0c; 假如某段时间内突然爆发了100个短小的线程&#xff0c;创建和销毁这些线程就会消耗很多时间&a…

SAP_ABAP-思考篇

作为一个SAP十年左右的从业者&#xff0c;其实我很清楚&#xff0c;我自身的能力&#xff0c;确实是很多东西都会一点&#xff0c;但是没有一样是精通的。坦白来说&#xff0c;我的个人简介里&#xff0c;虽然也不算夸大&#xff0c;但我估计有些新手小白看着可能会觉得还挺厉害…

【氮化镓】高电容密度的p-GaN栅电容在高频功率集成中的应用

这篇文章是香港科技大学Kevin J. Chen等人与台积电M.-H. Kwan等人关于高电容密度的p-GaN栅电容在高频功率集成中的应用研究。 文章详细介绍了p-GaN栅电容的设计、特性和在高频功率集成中的应用。通过实验数据和理论分析&#xff0c;文章展示了p-GaN栅电容在实现高电容密度、低…

2.前端路由的配置和使用

一&#xff0c;路由的作用 路由的作用就是将页面文件跟URL地址形成对应匹配 二&#xff0c;如何安装路由 这里我们采用pnpm的方式在项目中执行 pnpm install vue-routernext --save三&#xff0c;路由如何使用 首先创建一个我们需要访问的页面文件&#xff0c;这里我先创建…

二.使用PgAdmin连接Postgresql

二.使用PgAdmin连接Postgresql PostgreSQL是一种开源的对象关系型数据库管理系统(ORDBMS),它支持大部分SQL标准并提供了许多高级功能,例如事务、外键、视图、触发器等。PostgreSQL由PostgreSQL全球开发组维护和开发,它是一种高度可扩展的数据库系统,可以在各种操作系统…

web学习笔记(五十五)

目录 1. 配置代码片段的步骤 2. 条件判断 2.1 v-if、v-else、v-else-if 2.2 v-show 2.3 v-show和v-if的区别 1. 配置代码片段的步骤 在Visual Studio Code中我们可以将常用的代码配置成代码片段&#xff0c;这样就可以在页面上快速输入大段代码了。 &#xff08;1&#…

22 优化日志文件统计程序-按月份统计每个用户每天的访问次数

读取任务一中序列文件&#xff0c;统计每个用户每天的访问次数&#xff0c;最终将2021/1和2021/2的数据分别输出在两个文件中。 一、创建项目步骤&#xff1a; 1.创建项目 2.修改pom.xml文件 <packaging>jar</packaging> <dependencies><dependency>…

HNU-算法设计与分析-作业1

算法设计与分析 计科210X 甘晴void 202108010XXX 前言 这个系列本来想只用一个博客搞定的&#xff0c;谁曾想CSDN对于大批量文字的在线编辑一塌糊涂&#xff0c;感觉走倒车了。只能分成几个博客分别来讲了。后续会有作业-23456。作业重要的是搞懂原因。 文章目录 算法设计与…

【数据结构】时间、空间复杂度实例分析

跌倒了&#xff0c;就重新站起来&#xff0c;继续向前走&#xff1b;傻坐在地上是没用的。&#x1f493;&#x1f493;&#x1f493; 目录 •✨说在前面 &#x1f34b;知识点一&#xff1a;算法的效率 • &#x1f330;1.斐波那契数列的第n项 • &#x1f330;2.算法的复杂度…

001_PyQt简介

本系列面向零基础小白&#xff0c;从零开始到Pyqt 进行项目实战。 什么叫从零开始&#xff1f;从软件安装、环境配置开始。 不跳过一个细节&#xff0c;不漏掉一行代码&#xff0c;不省略一个例图。 PyQt作为一个强大的工具包&#xff0c;成功地将脚本语言python和QT库融合到…

nginx反向代理kafka集群实现内外网隔离访问 —— 筑梦之路

背景说明 我们在使用Kafka客户端连接到Kafka集群时&#xff0c;即使连接的节点只配置了一个集群的Broker地址&#xff0c;该Broker将返回给客户端集群所有节点的信息列表。然后客户端使用该列表信息&#xff08;Topic的分区信息&#xff09;再与集群进行数据交互。这里Kafka列表…