原子学习笔记4——GPIO 应用编程

一、应用层如何操控 GPIO

与 LED 设备一样,GPIO 同样也是通过 sysfs 方式进行操控,进入到/sys/class/gpio 目录下,如下所示:
在这里插入图片描述

  • gpiochipX:当前 SoC 所包含的 GPIO 控制器,我们知道 I.MX6UL/I.MX6ULL 一共包含了 5 个 GPIO控制器,分别为 GPIO1、GPIO2、GPIO3、GPIO4、GPIO5,在这里分别对应 gpiochip0、gpiochip32、gpiochip64、gpiochip96、gpiochip128 这 5 个文件夹,每一个 gpiochipX 文件夹用来管理一组 GPIO。随便进入到其中某个目录下,可以看到这些目录下包含了如下文件:
    在这里插入图片描述
    在这个目录我们主要关注的是 base、label、ngpio 这三个属性文件,这三个属性文件均是只读、不可写。

  • base:与 gpiochipX 中的 X 相同,表示该控制器所管理的这组 GPIO 引脚中最小的编号。每一个 GPIO引脚都会有一个对应的编号,Linux 下通过这个编号来操控对应的 GPIO 引脚。
    在这里插入图片描述
    可以看出gpiochip0最小编号为0,而gpiochip32最小编号为32.

  • label:该组 GPIO 对应的标签,也就是名字。
    在这里插入图片描述

  • ngpio:该控制器所管理的 GPIO 引脚的数量(所以引脚编号范围是:base ~ base+ngpio-1)。
    在这里插入图片描述
    对于给定的一个 GPIO 引脚,如何计算它在 sysfs 中对应的编号呢?其实非常简单,譬如给定一个 GPIO引脚为 GPIO4_IO16,那它对应的编号是多少呢?首先我们要确定 GPIO4 对应于gpiochip96,该组 GPIO 引脚的最小编号是 96(对应于 GPIO4_IO0),所以 GPIO4_IO16 对应的编号自然是 96 + 16 = 112;同理GPIO3_IO20 对应的编号是 64 + 20 = 84。

  • export:用于将指定编号的 GPIO 引脚导出。在使用 GPIO 引脚之前,需要将其导出,导出成功之后才能使用它。注意 export 文件是只写文件,不能读取,将一个指定的编号写入到 export 文件中即可将对应的 GPIO 引脚导出,譬如:

echo 0 > export # 导出编号为 0 的 GPIO 引脚(对于 I.MX6UL/I.MX6ULL 来说,也就是GPIO1_IO0)

导出成功之后会发现在/sys/class/gpio 目录下生成了一个名为 gpio0 的文件夹(gpioX,X 表示对应的编号),如图所示。这个文件夹就是导出来的 GPIO 引脚对应的文件夹,用于管理、控制该 GPIO 引脚。
在这里插入图片描述

  • unexport:将导出的 GPIO 引脚删除。当使用完 GPIO 引脚之后,我们需要将导出的引脚删除,同样该文件也是只写文件、不可读,譬如:
echo 0 > unexport # 删除导出的编号为 0 的 GPIO 引脚

删除成功之后,之前生成的 gpio0 文件夹就会消失!
控制 GPIO 引脚主要是通过 export 导出之后所生成的 gpioX(X 表示对应的编号)文件夹,在该文件夹目录下存在一些属性文件可用于控制 GPIO引脚的输入、输出以及输出的电平状态等。
Tips:需要注意的是,并不是所有 GPIO 引脚都可以成功导出,如果对应的 GPIO 已经在内核中被使用了,那便无法成功导出,打印如下信息:
在这里插入图片描述
那也就是意味着该引脚已经被内核使用了,譬如某个驱动使用了该引脚,那么将无法导出成功!

gpioX
将指定的编号写入到 export 文件中,可以导出指定编号的 GPIO 引脚,导出成功之后会在/sys/class/gpio目录下生成对应的 gpioX(X 表示 GPIO 的编号)文件夹,以前面所生成的 gpio0 为例,进入到 gpio0 目录,该目录下的文件如下所示:
在这里插入图片描述
我们主要关心的文件是 active_low、direction、edge 以及 value 这四个属性文件,接下来分别介绍这四个属性文件的作用:

  • direction:配置 GPIO 引脚为输入或输出模式。该文件可读、可写,读表示查看 GPIO 当前是输入还是输出模式,写表示将 GPIO 配置为输入或输出模式;读取或写入操作可取的值为"out"(输出模式)和"in"(输入模式),如下所示:
    在这里插入图片描述
  • value:在 GPIO 配置为输出模式下,向 value 文件写入"0"控制 GPIO 引脚输出低电平,写入"1"则控制 GPIO 引脚输出高电平。在输入模式下,读取 value 文件获取 GPIO 引脚当前的输入电平状态。譬如:
# 获取 GPIO 引脚的输入电平状态
echo "in" > direction
cat value
# 控制 GPIO 引脚输出高电平
echo "out" > direction
echo "1" > value
  • active_low:这个属性文件用于控制极性,可读可写,默认情况下为 0,譬如:
# active_low 等于 0
echo "0" > active_low
echo "out" > direction
echo "1" > value #输出高
echo "0" > value #输出低
# active_low 等于 1
$ echo "1" > active_low
$ echo "out" > direction
$ echo "1" > value #输出低
$ echo "0" > value #输出高

由此看出,active_low 的作用已经非常明显了,对于输入模式来说也同样适用。

  • edge:控制中断的触发模式,该文件可读可写。在配置 GPIO 引脚的中断触发模式之前,需将其设置为输入模式:
非中断引脚:echo "none" > edge
上升沿触发:echo "rising" > edge
下降沿触发:echo "falling" > edge
边沿触发:echo "both" > edge

当引脚被配置为中断后可以使用 poll()函数监听引脚的电平状态变化。

二、GPIO 应用编程之输出

上一小节已经向大家介绍了如何通过 sysfs 方式控制开发板上的 GPIO 引脚,本小节我们编写一个简单地测试程序,控制开发板上的某一个 GPIO 输出高、低不同的电平状态,其示例代码如下所示:

// 示例代码 16.2.1 控制 GPIO 输出高低电平
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
static char gpio_path[100];
static int gpio_config(const char *attr, const char *val)
{char file_path[100];int len;int fd;sprintf(file_path, "%s/%s", gpio_path, attr);if (0 > (fd = open(file_path, O_WRONLY))) {perror("open error");return fd;}len = strlen(val);if (len != write(fd, val, len)) {perror("write error");close(fd);return -1;}close(fd); //关闭文件return 0;
}
int main(int argc, char *argv[])
{// /* 校验传参 if (3 != argc) {fprintf(stderr, "usage: %s <gpio> <value>\n", argv[0]);exit(-1);}// /* 判断指定编号的 GPIO 是否导出 sprintf(gpio_path, "/sys/class/gpio/gpio%s", argv[1]);if (access(gpio_path, F_OK)) {//如果目录不存在 则需要导出int fd;int len;if (0 > (fd = open("/sys/class/gpio/export", O_WRONLY))) {perror("open error");exit(-1);}len = strlen(argv[1]);if (len != write(fd, argv[1], len)) {//导出 gpioperror("write error");close(fd);exit(-1);}close(fd); //关闭文件}// /* 配置为输出模式 if (gpio_config("direction", "out"))exit(-1);// /* 极性设置 if (gpio_config("active_low", "0"))exit(-1);// /* 控制 GPIO 输出高低电平 if (gpio_config("value", argv[2]))exit(-1);// /* 退出程序 exit(0);
}

执行程序时需要传入两个参数,argv[1]指定 GPIO 的编号、argv[2]指定输出电平状态(0 表示低电平、1 表示高电平)。
上述代码中首先使用 access()函数判断指定编号的 GPIO 引脚是否已经导出,也就是判断相应的 gpioX目录是否存在,如果不存在则表示未导出,则通过"/sys/class/gpio/export"文件将其导出;导出之后先配置了GPIO 引脚为输出模式,也就是向 direction 文件中写入"out";接着再配置极性,通过向 active_low 文件中写入"0"(不用配置也可以);最后再控制 GPIO 引脚输出相应的电平状态,通过对 value 属性文件写入"1"或"0"来使其输出高电平或低电平。
测试:编译的到的可执行文件拷贝到开发板 Linux 系统用户家目录下,执行该应用程序控制开发板上的 GPIO1_IO01 引脚输出高或低电平:

./gpio_out 1 1		#控制 GPIO1_IO01 输出高电平
./gpio_out 1 0		#控制 GPIO1_IO01 输出低电平

执行相应的命令后,可以使用万用表或者连接一个 LED 小灯进行检验,以验证实验结果!

三、GPIO 应用编程之输入

编写一个读取 GPIO 电平状态的测试程序

// 示例代码 16.3.1 读取 GPIO 电平状态
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
static char gpio_path[100];
static int gpio_config(const char *attr, const char *val)
{char file_path[100];int len;int fd;sprintf(file_path, "%s/%s", gpio_path, attr);if (0 > (fd = open(file_path, O_WRONLY))) {perror("open error");return fd;}len = strlen(val);if (len != write(fd, val, len)) {perror("write error");close(fd);return -1;}close(fd); //关闭文件return 0;
}
int main(int argc, char *argv[])
{char file_path[100];char val;int fd;// /* 校验传参 if (2 != argc) {fprintf(stderr, "usage: %s <gpio>\n", argv[0]);exit(-1);}// /* 判断指定编号的 GPIO 是否导出 sprintf(gpio_path, "/sys/class/gpio/gpio%s", argv[1]);if (access(gpio_path, F_OK)) {//如果目录不存在 则需要导出int len;if (0 > (fd = open("/sys/class/gpio/export", O_WRONLY))) {perror("open error");exit(-1);}len = strlen(argv[1]);if (len != write(fd, argv[1], len)) {//导出 gpioperror("write error");close(fd);exit(-1);}close(fd); //关闭文件}// /* 配置为输入模式 if (gpio_config("direction", "in"))exit(-1);// /* 极性设置 if (gpio_config("active_low", "0"))exit(-1);// /* 配置为非中断方式 if (gpio_config("edge", "none"))exit(-1);// /* 读取 GPIO 电平状态 sprintf(file_path, "%s/%s", gpio_path, "value");if (0 > (fd = open(file_path, O_RDONLY))) {perror("open error");exit(-1);}if (0 > read(fd, &val, 1)) {perror("read error");close(fd);exit(-1);}printf("value: %c\n", val);// /* 退出程序 close(fd);exit(0);
}

执行程序时需要传入一个参数,argv[1]指定要读取电平状态的 GPIO 对应的编号。
上述代码中首先使用 access()函数判断指定编号的 GPIO 引脚是否已经导出,若未导出,则通过
“/sys/class/gpio/export"文件将其导出;导出之后先配置了 GPIO 引脚为输入模式,也就是向 direction 文件中写入"in”;接着再配置极性、设置 GPIO 引脚为非中断模式(向 edge 属性文件中写入"none")。最后打开 value 属性文件,读取 GPIO 的电平状态并将其打印出来。

测试:编译的到的可执行文件拷贝到开发板 Linux 系统用户家目录下,执行该应用程序以读取 GPIO1_IO01 引脚此时的电平状态,是高电平还是低电平?
首先通过杜邦线将 GPIO1_IO01 引脚连接到板子上的 3.3V 电源引脚上,接着执行命令读取 GPIO 电平状态:
在这里插入图片描述
打印出的 value 等于 1,表示读取到 GPIO 的电平确实是高电平;接着将 GPIO1_IO01 引脚连接到板子上的 GND 引脚上,执行命令:
在这里插入图片描述
打印出的 value 等于 0,表示读取到 GPIO 的电平确实是低电平;测试结果与实际相符合!

四、GPIO 应用编程之中断

在应用层可以将 GPIO 配置为中断触发模式,譬如将 GPIO 配置为上升沿触发、下降沿触发或者边沿触发,本小节我们来编写一个测试程序,将 GPIO 配置为边沿触发模式并监测中断触发状态。其示例代码如下所示:

// 示例代码 16.4.1 监测 GPIO 中断触发
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <poll.h>
static char gpio_path[100];
static int gpio_config(const char *attr, const char *val)
{char file_path[100];int len;int fd;sprintf(file_path, "%s/%s", gpio_path, attr);if (0 > (fd = open(file_path, O_WRONLY))) {perror("open error");return fd;}len = strlen(val);if (len != write(fd, val, len)) {perror("write error");return -1;}close(fd); //关闭文件return 0;
}
int main(int argc, char *argv[])
{struct pollfd pfd;char file_path[100];int ret;char val;/* 校验传参 */if (2 != argc) {fprintf(stderr, "usage: %s <gpio>\n", argv[0]);exit(-1);}/* 判断指定编号的 GPIO 是否导出 */sprintf(gpio_path, "/sys/class/gpio/gpio%s", argv[1]);if (access(gpio_path, F_OK)) {//如果目录不存在 则需要导出int len;int fd;if (0 > (fd = open("/sys/class/gpio/export", O_WRONLY))) {perror("open error");exit(-1);}len = strlen(argv[1]);if (len != write(fd, argv[1], len)) {//导出 gpioperror("write error");exit(-1);}close(fd); //关闭文件}/* 配置为输入模式 */if (gpio_config("direction", "in"))exit(-1);/* 极性设置 */if (gpio_config("active_low", "0"))exit(-1);/* 配置中断触发方式: 上升沿和下降沿 */if (gpio_config("edge", "both"))exit(-1);/* 打开 value 属性文件 */sprintf(file_path, "%s/%s", gpio_path, "value");if (0 > (pfd.fd = open(file_path, O_RDONLY))) {perror("open error");exit(-1);}/* 调用 poll */pfd.events = POLLPRI; //只关心高优先级数据可读(中断)read(pfd.fd, &val, 1);//先读取一次清除状态for ( ; ; ) {ret = poll(&pfd, 1, -1); //调用 pollif (0 > ret) {perror("poll error");exit(-1);}else if (0 == ret) {fprintf(stderr, "poll timeout.\n");continue;}/* 校验高优先级数据是否可读 */if(pfd.revents & POLLPRI) {if (0 > lseek(pfd.fd, 0, SEEK_SET)) {//将读位置移动到头部perror("lseek error");exit(-1);}if (0 > read(pfd.fd, &val, 1)) {perror("read error");exit(-1);}printf("GPIO 中断触发<value=%c>\n", val);}}/* 退出程序 */exit(0);
}

执行程序时需要传入一个参数,argv[1]指定要读取电平状态的 GPIO 对应的编号。
上述代码中首先使用 access()函数判断指定编号的 GPIO 引脚是否已经导出,若未导出,则通过
"/sys/class/gpio/export"文件将其导出。对 GPIO 进行配置:配置为输入模式、配置极性、将触发方式配置为边沿触发。
打开 value 属性文件,获取到文件描述符,接着使用 poll()函数对 value 的文件描述符进行监视,这里为什么要使用 poll()监视、而不是直接对文件描述符进行读取操作?这里简单的描述一下。poll()函数可以监视一个或多个文件描述符上的 I/O 状态变化,譬如 POLLIN、POLLOUT、POLLERR、POLLPRI 等,其中 POLLIN 和 POLLOUT 表示普通优先级数据可读、可写,而 POLLPRI 表示有高优先级数据可读取,中断就是一种高优先级事件,当中断触发时表示有高优先级数据可被读取。

测试:编译的到的可执行文件拷贝到开发板 Linux 系统用户家目录下,执行该应用程序可
以监测 GPIO 的中断触发。执行应用程序监测 GPIO1_IO01 引脚的中断触发情况,如下所示:
在这里插入图片描述
当执行命令之后,我们可以使用杜邦线将 GPIO1_IO01 引脚连接到 GND 或 3.3V 电源引脚上,来回切换,使得 GPIO1_IO01 引脚的电平状态发生由高到低或由低到高的状态变化,以验证 GPIO 中断的边沿触发情况;当发生中断时,终端将会打印相应的信息,如上图所示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/10360.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数组算法】598. 区间加法

给你一个 m x n 的矩阵 M 和一个操作数组 op 。矩阵初始化时所有的单元格都为 0 。ops[i] [ai, bi] 意味着当所有的 0 < x < ai 和 0 < y < bi 时&#xff0c; M[x][y] 应该加 1。 在 执行完所有操作后 &#xff0c;计算并返回 矩阵中最大整数的个数 。 示例 1: …

基于Vue3与ElementUI Plus的酷企秀场景可视化DIY设计器探索(更新版)

一、引言 在当今数字化快速发展的时代&#xff0c;企业对于展示自身形象、产品细节以及提升客户体验的需求日益增强。酷企秀场景可视化DIY设计器&#xff0c;以其强大的功能和灵活的定制性&#xff0c;为企业提供了从VR全景展示到地图可视化、电子画册制作等一系列数字化解决方…

工业机器人应用实践之玻璃涂胶(篇一)

工业机器人 工业机器人&#xff0c;即面向工业领域的机器人。工业机器人是广泛用于工业领域的多关节机械手或多自由度的机器装置&#xff0c;具有一定的自动性&#xff0c;可依靠自身的动力能源和控制能力实现各种工业加工制造功能。工业机器人被广泛应用于电子、物流、化工等…

LeetCode 106.从中序与后序遍历序列构造二叉树

LeetCode 106.从中序与后序遍历序列构造二叉树 1、题目 题目链接&#xff1a;106. 从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并…

在 Python 的哪个版本之后,字典的添加顺序与键的顺序是一致的?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 在 Python 的不同版本中&#xff0c;字典&#xff08;dict&#xff09;类型的行为发生了显著变化。在 Python 3.6 及之前的版本中&#xff0c;字典是无序的&#xff0c;这意味着字典在遍历时不能保证按…

数据结构十三:八大排序算法

排序算法&#xff08;sorting algorithm&#xff09;是用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用&#xff0c;因为有序数据通常能够被更高效地查找、分析和处理。排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定&am…

Python基础详解四

一&#xff0c;Json解析 字典转换为JSON&#xff1a; import jsondata [{"name":"袁震","age":20},{"name":"张三","age":21},{"name":"李四","age":22}] str json.dumps(data) …

Linux(centos7)系统配置 ntpd服务设置时间同步

一 、应用场景 两台服务器,要求使他们时间同步,有人问为什么要时间同步?如果一个集群中,时间相差很大,那么会出现很多诡异的问题,你也不想在一个无法解决的问题上浪费几天时间吧!总之,设置服务器之间时间同步,为了避免很多问题的发生! ntpd(Network Time Protocol …

【第20章】spring-mvc之定时任务

文章目录 前言一、开启1. 打开开关2. 定时任务类3. 执行结果 二、定时任务线程池1.定义线程池2.开启异步3. 定时任务类4. 执行结果 三、cron总结 前言 定时任务是项目中比较常见的功能&#xff0c;常用于定时发送消息、拉取数据、数据备份等&#xff1b; 为什么要放到SpringM…

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;四&#xff09; 大家继续看 https://lilianweng.github.io/posts/2023-06-23-agent/的文档内容 第三部分&#xff1a;工具使用 工具的使用是人类的一个显着而显着的特征。我们创造、修改和利用外部物体来完成超…

20240511,谓词,内建函数对象

拜托铠甲勇士真的帅好不好&#xff01;&#xff01;&#xff01; STL案例2-员工分组 10个员工&#xff0c;指派部门&#xff0c;员工信息&#xff08;姓名&#xff0c;工资组成&#xff0c;部门&#xff1a;策划&#xff0c;美术&#xff0c;研发&#xff09;&#xff0c;随机…

【gpedit.msc】组策略编辑器的安装,针对windows家庭版,没有此功能

创建一个记事本文件然后放入以下内容 echo offpushd "%~dp0"dir /b %systemroot%\Windows\servicing\Packages\Microsoft-Windows-GroupPolicy-ClientExtensions-Package~3*.mum >gp.txtdir /b %systemroot%\servicing\Packages\Microsoft-Windows-GroupPolicy-…

SSM【Spring SpringMVC Mybatis】——Mybatis

目录 1、初识Mybatis 1.1Mybatis简介 1.2 官网地址 2、搭建Mybatis框架 2.1 准备 2.2 搭建Mybatis框架步骤 1. 导入jar包 2. 编写核心配置文件【mybatis-config.xml】 3. 书写相关接口及映射文件 4. 测试【SqlSession】 2.3 添加Log4j日志框架 导入jar包 编写配置文…

ERA5数据的区别

ERA5 hourly data on single levels from 1940 to present 链接 ERA5是欧洲中期天气预报中心(ECMWF)的第五代全球气候和天气再分析产品&#xff0c;涵盖过去80年的数据。数据可从1940年开始获取&#xff0c;ERA5取代了ERA-Interim再分析产品。 再分析将全球范围内的模型数据与…

详解drop,delete,truncate区别

在SQL中&#xff0c;"DROP"、"DELETE"和"TRUNCATE"是用于删除数据的不同命令&#xff0c;它们之间有一些重要的区别&#xff1a; DROP&#xff1a; DROP用于删除数据库对象&#xff0c;例如删除表、视图、索引、触发器等。使用DROP删除的对象将…

27.哀家要长脑子了!---栈与队列

1.739. 每日温度 - 力扣&#xff08;LeetCode&#xff09; 用单调栈的方法做&#xff1a; 从左到右遍历数组&#xff1a; 栈中存放的是下标&#xff0c;每个温度在原数组中的下标&#xff0c;从大到小排列&#xff0c;因为这样才能确保的是最近一天的升高温度 如果栈为空&am…

Vue面试经验2

Vue 你说你在vue项目中实现了自定义指令&#xff0c;如何实现 全局指令在main.js入口文件中实现 使用方法&#xff1a;v-指令名称 每个钩子函数都有两个参数&#xff08;ele,obj&#xff09; ele:绑定指令的元素 obj:指令的一些信息&#xff08;比如绑定指令的值&#xff0c…

虚表,虚函数习题

6. 关于虚表说法正确的是&#xff08;d &#xff09; A&#xff1a;一个类只能有一张虚表 多重继承 B&#xff1a;基类中有虚函数&#xff0c;如果子类中没有重写基类的虚函数&#xff0c;此时子类与基类共用同一张虚表 即使子类重写了基类的虚函数&#xff0c;此时子类与…

探索生产者/消费者模式:解决并发编程中的资源竞争

序言 在并发编程中&#xff0c;资源竞争是一个常见的问题。为了有效地管理资源并确保线程安全&#xff0c;需要采用一些有效的方法。其中之一是生产者/消费者模式&#xff0c;它是一种经典的并发设计模式&#xff0c;用于解决生产者和消费者之间的协作问题。本文将深入探讨生产…

Ansible playbook

playbook playbook介绍 playbooks是ansible用于配置&#xff0c;部署&#xff0c;和管理被控节点的剧本。通过playbooks的详细描述&#xff0c;执行其中的tasks&#xff0c;可以让远端主机达到预期的状态。playbooks是由一个或多个”play”组成的列表。 当对一台机器做环境初…