空间复杂度与链表刷题

"一切的一切都是你自己在感应."

本文索引

  • 空间复杂度
    • 复杂度实例
      • 实例1
      • 实例2
      • 实例3
  • 链表题目
    • 1. 返回倒数第K个节点
    • 2. 链表的回文结构
    • 3. 相交链表
    • 4. 随机链表的复制
    • 5. 环形链表
  • 总结:

前言:
本文主要探究空间复杂度与链表题目讲解
更多文章点击主页: 酷酷学!!!
如果此文对您有帮助, 您的点赞与关注是我最大的动力 !


正文开始

空间复杂度

空间复杂度也是一个数学表达式, 是对一个算法在运行时临时占用存储空间大小的量度.
空间复杂度不是程序占用了多少bytes的空间, 因为这个也没太大意义, 所以空间复杂度算的是变量的个数. 空间复杂度计算规则基本跟时间复杂度类似, 也使用大O渐进表示法.
注意: 函数运行时所需要的栈空间(存储参数,局部变量,一些寄存器信息等)在编译期间已经确定好了, 因此空间复杂度主要通过函数在运行时候显示申请的额外空间来确定.

复杂度实例

实例1

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

解析:

首先解决这个问题我们需要计算额外的空间, 这里一共创建了三个变量, end, exchange, i ,使用了常数个额外空间,所以空间复杂度为 O(1)

实例2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

解析:
在这里插入图片描述
这里,一共开辟了N个函数栈帧, 动态开辟了N个空间,空间复杂度为 O(N),而时间复杂度为O(2^N).

实例3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

解析:

在这里插入图片描述

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

链表题目

1. 返回倒数第K个节点

题目链接: 返回倒数第K个节点

题目描述:

在这里插入图片描述
题目分析:
       本题的解法有很多种, 例如创建数组, 或者将链表反转等等, 这里我们采用一种比较经典的双指针法, 只需要变量一遍链表, 并且空间复杂度为O(1),时间复杂度为O(N), 首先采用数理思想, 定义快慢指针, 快指针先走K个节点,然后在同时走, 因为中间的差距一直为K,所以当快指针走到NULL的时候, 此时慢指针即为倒数第K个节点.因为题目要求K值是有效的, 所以我们也无需判断K值是否有效.

画图演示:

在这里插入图片描述

代码如下:

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*///时间复杂度为O(1)
int kthToLast(struct ListNode* head, int k){struct ListNode* fast = head;struct ListNode* slow = head;while(k--){fast = fast->next;}while(fast){fast = fast->next;slow = slow->next;}return slow->val;
}

2. 链表的回文结构

题目链接: 链表的回文结构

题目描述:

在这里插入图片描述
题目分析:

       本题可以说是一个综合题, 结合前面对链表的掌握, 理解了思路就变得比较简单, 首先回文结构并不陌生, 数组题目中我们已经见过, 例如12321, 或者1221就是回文结构, 如果是数组, 我们可以采用双指针法, 一个在头, 一个在尾, 两两比较, 分别向中间前进, 但是此时是个链表, 该如何比较呢.

       单链表链表的结构不能直接从后向前遍历, 首先第一步, 寻找中间节点, 然后将中间节点之后的链表进行反转, 然后从头结点开始与中间节点之后的链表的值进行比较, 当然我们需要讨论链表为奇数或者偶数的情况, 但是不难发现, 如下图所示, 不管是奇数还是偶数, 都不影响, 我们只需要判断其中一个链表是否走到NULL.

画图演示:

在这里插入图片描述

代码如下:

/*
struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), next(NULL) {}
};*/
#include <cstddef>
class PalindromeList {
public://1. 寻找中间节点struct ListNode * midNode(ListNode* A){struct ListNode * fast = A;struct ListNode * slow = A;while(fast&&fast->next){fast = fast->next->next;slow = slow->next;}return slow;}//2.反转后半段链表struct ListNode *reverseNode(ListNode* mid){if(mid == NULL){return mid;}struct ListNode * l1 = NULL;struct ListNode * l2 = mid;struct ListNode * l3 = mid->next;while(l2){l2->next = l1;l1 = l2;l2 = l3;if(l3){l3 = l3->next;}}return l1;}bool chkPalindrome(ListNode* A) {struct ListNode * mid = midNode(A);struct ListNode * B = reverseNode(mid);while(A&&B){if(A->val != B->val){return false;}A = A->next;B = B->next;}return true;// write code here}
};

3. 相交链表

题目链接: 相交链表

题目描述:

在这里插入图片描述

题目分析:

       判断链表相交, 如果说一个一个比较的话, 链表A的节点依次和链表B的节点一次进行比较这样太麻烦了, 而且时间复杂度为O(N^2), 那么, 判断链表相交 ,我们可以遍历链表, 如果两个链表最后一个节点相等的话, 那么就一定相交, 但是如何返回第一个相交节点呢, 通过分别比较吗, 大可不必, 在我们遍历链表的时候, 我们可以顺便计算出链表的相对差值, 然后让长的链表走差值的距离, 在同时走, 那么只要两个节点相遇, 就是第一个相交节点.

画图演示:

在这里插入图片描述

代码如下:

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {struct ListNode* cur1 = headA;struct ListNode* cur2 = headB;int long1 = 0,long2 = 0;while(cur1->next){long1++;cur1 = cur1->next;}while(cur2->next){long2++;cur2 = cur2->next;}if(cur1 != cur2){return NULL;}struct ListNode* LongList = headA;struct ListNode* ShortList = headB;if(long2>long1){LongList = headB;ShortList = headA;}int dig = abs(long1-long2);while(dig--){LongList = LongList->next;}while(LongList!=ShortList){LongList = LongList->next;ShortList = ShortList ->next;}return LongList;
}

4. 随机链表的复制

在这里插入图片描述
在这里插入图片描述
题目分析:
       深拷贝就是复制出来一个一模一样的链表, 如果我们直接创建一个新的节点, 但是对random的处理比较麻烦, 我们需要计算出相对位置, 以确保random的指向正确. 这里我们换一种思路, 如下图所示, 我们在每个节点之后插入一个新的节点, 此时处理random就比较简单了,拷贝节点的 random的指向就是cur->random->next. 最后再将拷贝节点拿下来尾插, 成为一个新的链表.虽然破坏了原链表的结构, 我们也可以进行恢复, 但是题目没有要求 ,所以, 我们也可以不用恢复.

画图演示:

在这里插入图片描述

代码如下:

/*** Definition for a Node.* struct Node {*     int val;*     struct Node *next;*     struct Node *random;* };*/struct Node* copyRandomList(struct Node* head) {struct Node* cur = head;while(cur){struct Node* copyNode = (struct Node*)malloc(sizeof(struct Node));copyNode->val = cur->val;copyNode->next = cur->next;cur->next = copyNode;cur = copyNode->next;}cur = head;while(cur){   struct Node* copy = cur->next;if(cur->random == NULL){copy->random = NULL;}else{copy->random = cur->random->next;}cur = copy->next;}cur = head;struct Node* copyHead = NULL;struct Node* copyTail = NULL;while(cur){struct Node* copy = cur->next;//Node* next = copy->next;if(copyTail == NULL){copyHead = copyTail = copy;}else{copyTail->next = copy;copyTail = copyTail->next;}cur = copy->next;//cur = next;恢复原链表}return copyHead;
}

5. 环形链表

题目链接:环形链表2

题目描述:

在这里插入图片描述

代码如下:

这里我们采用双指针法, 快指针一次走两步 , 慢指针一次走一步, 因为有相对速度, 所以当慢指针进入环时,快指针开始追击, 当快指针追击上满指针则带环, 若追击不上,则不带环.
面试时可能会问到:

  1. 为什么一定会相遇,有没有可能会错过, 永远追不上? 请证明
  2. slow一次走一步, fast走3步 4步 5步 一定能追上吗? 请证明

首先证明问题1, 一次走一步, 假设slow进环时, fast和slow的距离是N, 那么fast追击slow过程中变化距离如下, 每次追击一次, 距离就缩小1, 距离为0就追上了.
在这里插入图片描述

证明问题2:

这里我们假设fast一次走3步, 当slow进环时, fast开始追击, 每次的距离变化如下, 如果N是偶数的情况下,那么就一定可以追上, 当为奇数时,就进入到第二次的追击, 假设环的长度为C, 那么下一次追击的距离就为C-1, 那如果C-1为偶数的话那么就可以追上, 但是如果C-1又为奇数那么就永远追不上, 此时我们就需要证明会不会永远追不上, 也就是证明当N为奇数的情况下, C-1为奇数, 即C为偶数吗, 通过fast走的距离和slow走的距离, 我们可以知道3slow = fast .

fast走的距离为:L + xC +C-N, (L为未进环时的长度, C为环的长度, x为走的圈数, N为slow进环时和fast的距离)
slow走的距离为: L
由此可得3L = L+X
C+C-N
化简可以得到, 2L = (X+1)C - N
此时只需证明N为奇数, C能否为偶数, 是偶数就永远追不上
根据等式 2L一定为偶数, 而N假设为奇数, 那么C如果为偶数的话,
即 偶数 = (X+1)*偶数 - 奇数 等式不成立,
因为只有奇数-奇数才能等于偶数, 所以C 一定为奇数,故不可能追不上
其余证明思想类似

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

接下来, 我们判断出了是带环链表, 那我们如何找到入环时的第一个节点呢?

先来分析一波
假设相遇的时的节点为meet, 那么slow走的路程为L+N, fast走的路程为L+X * C +N ,根据2slow = fast,我们又可以得到
2(L+N) = L+X*C + N
化简得到
L+N = X *C
L = X *C-N
L = (X-1)C +C -N
(X-1)C可以想象成走了多少圈但是还是会回到meet那个位置, 所以L的到第一个入环节点的距离等于C-N
那么我们只需要随便找两个指针, 一个从head开始走, 一个从meet开始走, 只要他们两个相遇, 那么就是第一个入环节点.

在这里插入图片描述
在这里插入图片描述

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
struct ListNode *detectCycle(struct ListNode *head) {struct ListNode* fast = head;struct ListNode* slow = head;while(fast&&fast->next){fast = fast->next->next;slow = slow->next;if(fast==slow){struct ListNode* meet = slow;fast = head;while(meet!=fast){meet = meet->next;fast = fast->next;}return meet;}}return NULL;
}

总结:

空间复杂度表示算法在运行过程中需要使用的额外的空间资源。空间复杂度的计算通常是以算法需要的额外空间大小来衡量的。链表是一种常见的数据结构,用于存储和操作一系列具有关联关系的数据元素。
链表的面试题常见的有:
反转链表: 将一个链表反转,即将链表中的节点逆序排列。
链表中倒数第k个节点: 找到链表中倒数第k个节点的值。
链表是否有环: 判断一个链表是否存在环。
合并两个有序链表: 将两个有序链表合并为一个有序链表。
删除链表中的重复元素: 删除链表中重复的元素,使得每个元素只出现一次。
在解决链表面试题时,常用的方法有:
递归法: 使用递归的方式处理链表的问题,递归可以简化问题的处理过程。
快慢指针法: 使用快慢指针来寻找链表中的某个位置,如链表中的中间节点、倒数第k个节点等。
翻转链表法: 使用指针来改变链表节点的指向,实现链表的翻转。
在面试过程中,对于链表问题,需要注意空指针的处理,以及边界条件的判断。同时,对于链表的基本操作,如插入、删除等,也要熟练掌握。

最后感谢关注点赞, 如果错误欢迎指正.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/10177.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

构建内网yum仓库

1、环境介绍 系统&#xff1a;龙蜥os 7.9 2、安装epel源 yum install epel-release -y3、安装nginx服务器并启动 yum install nginx httpd -y配置 server {listen 80;server_name repo.wtown.com;root /usr/share/nginx/html/repo;index index.html index.htm;location / {…

Sora惊艳亮相:AI技术掀起创作革命,影视产业迎来新风貌!

Sora平台近期发布了名为"Sora首次印象"的更新&#xff0c;为用户带来了令人瞩目的变化。该更新不仅展示了Sora平台的发展方向&#xff0c;还介绍了其在电影制作、广告宣传等领域的潜在应用。 同时&#xff0c;Sora的首席执行官Sam Altman与好莱坞影视工作室进行了会…

基于Python的数据分组技术:将数据按照1, 2, 3规则分为三个列表

目录 一、引言 二、数据分组原理与意义 三、案例分析 四、代码实现与解释 五、对新手友好的解释 六、技术细节与扩展 七、实际应用场景 八、总结 一、引言 在数据处理和分析的广阔领域中&#xff0c;数据分组是一项基础且重要的任务。数据分组通常指的是将数据集中的元…

在做题中学习(55):一维前缀和模板

【模板】前缀和_牛客题霸_牛客网 (nowcoder.com) 题目解释&#xff1a; 注意&#xff1a;下标从1开始的。 l 和 r就是对这n个整数去取一个区间&#xff0c;例如示例一&#xff1a; (1,2) 区间 就是算出1 2 4 中 1&#xff0c;2下标对应值的和&#xff0c;12 3 同理,(2,3) …

springboot2.x集成Elasticsearch7.7.0

一、前言 elasticsearch安装就不做过多介绍了&#xff0c;网上一搜一大堆&#xff1b;最需要注意的就是Elasticsearch与spring版本&#xff0c;防止版本不兼容导致的后续的一系列问题。我这里springbootspring-data-elasticsearch&#xff0c;他们的版本对照关系可以参照sprin…

vue2后台管理项目

一:项目准备 1)拉取模板代码 远程仓库复制到本地仓库. 2)安装后的项目 路径 code 文件夹 会打开vscode的文件夹. 3)安装vetur和eslint插件可以保存时自动修改不规范的地方. 4)App内有一级路由,路由组件导入如果是layout架子,会导入的是文件夹下的index.js没有则导入index.v…

有什么实用的还原试卷的app免费?6个软件教你快速进行还原试卷

有什么实用的还原试卷的app免费&#xff1f;6个软件教你快速进行还原试卷 在现代化的教学环境中&#xff0c;使用数字化工具进行试卷还原变得愈发重要。以下是六个实用的、免费的应用程序&#xff0c;它们为还原试卷提供了便捷的解决方案。 FunAI&#xff1a; 这款应用程序可…

SD-WAN提升Microsoft 365用户体验

随着数字化时代的到来&#xff0c;SaaS应用如Microsoft 365已经成为各类企业的主流选择。在这一趋势下&#xff0c;企业需要以更加灵活、高效的方式使用Microsoft 365&#xff0c;以满足日益增长的业务需求。而传统的网络基础设施可能无法满足这一需求&#xff0c;因此&#xf…

指针的奥秘(三):数组指针+函数指针(+typedef)+函数数组指针+转移表

指针 一.数组指针1.数组指针变量是什么&#xff1f;2.指针数组和数组指针区别和口诀3.数组指针变量怎么初始化4.二维数组传参的本质 二.函数指针1.函数指针变量的创建2.函数指针变量的使用3.两段有趣的代码1.( *( void ( * )( ) )0 ) ( );2.void( *signle(int, void( * )(int) …

TCP协议的确认应答机制

TCP&#xff08;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层协议&#xff0c;它在网络通信中扮演着至关重要的角色。其中&#xff0c;确认应答机制是TCP协议中的一个核心概念&#xff0c;它确保了数据的可靠传输。本文将详细介绍J…

【QA】Java集合常用的函数

文章目录 前言Collection接口通用函数 | Collections工具类通用函数 | List接口 Set接口List接口ArrayListLinkedList Set接口TreeSetHashSetLinkedHashSet Map接口通用函数TreeMapHashMapLinkedHashMap 前言 本文介绍Java集合中常用的函数。 Collection接口 通用函数 | Co…

WP All Import Pro插件下载 - 一键导入,无限可能

在当今快节奏的数字时代&#xff0c;网站内容的更新和管理是每个网站管理员和开发者的日常工作。但是&#xff0c;传统的手动更新方法不仅耗时&#xff0c;而且容易出错。现在&#xff0c;有了WP All Import Pro&#xff0c;这一切都将改变。 WP All Import Pro 是一款专为Wor…

ABAP ZCL_EXCEL 实际用的案例 对账单

ABAP ZCL_EXCEL 实际用的案例 FORM GETITEMSANDOUTPUT USING PGS_HEAD TYPE GSHEAD.DATA:FILENAME TYPE STRING.DATA:LKUNNR TYPE KNA1-KUNNR.DATA:PROW TYPE I.DATA:LSDATE TYPE STRING.DATA:SUMXSJE TYPE DMBTR,ZYMYE TYPE DMBTR, "月末余额SUMBYXSYE TYPE DMBT…

全新神经网络架构KAN——本文用于学习与探索

论文地址&#xff1a;https://arxiv.org/pdf/2404.19756 Github&#xff1a;GitHub - KindXiaoming/pykan: Kolmogorov Arnold Networks 文档说明&#xff1a;Welcome to Kolmogorov Arnold Network (KAN) documentation! — Kolmogorov Arnold Network documentation 本文仅…

二手交易系统基于Uniapp+FastAdmin+ThinkPHP(源码搭建/上线/运营/售后/更新)

​一款基于UniappFastAdminThinkPHP开发的二手交易系统&#xff0c;卖家可以发布二手信息&#xff0c;买家可以在线询价&#xff0c;支持在线聊天(高级授权)&#xff0c;在线购买支付&#xff0c;支持发布高价回收(高级授权)信息。自带社交板块&#xff0c;用户可以发布帖子、加…

Prompt|Kimi高阶技巧,99%的人都不知道

大家好&#xff0c;我是无界生长。 今天分享一条咒语&#xff0c;轻松让Kimi帮你生成流程图&#xff0c;学会了的话&#xff0c;点赞收藏起来吧&#xff01; 效果展示 我们演示一下让kimi帮忙绘制 关注微信公众号“无界生长”的流程图&#xff0c;最终效果图如下所示 效果还不…

针对 % 号 | 引起的 不安全情况

把网站开放的课程都检索下来了 一、情况1 org.apache.tomcat.util.http.Parameters processParameters 信息: Character decoding failed. Parameter [Mac] with value [%%%] has been ignored. Note that the name and value quoted here may be corrupted due to the failed…

数组元素翻倍C++

编写一个 C 程序&#xff0c;实现一个功能&#xff0c;即将数组中的每个元素值翻倍。程序应定义一个函数 doubleArray&#xff0c;该函数接收一个整数数组的指针和数组的大小&#xff0c;然后将数组中的每个元素都翻倍。 代码 #include <iostream>void doubleArray(int…

红帽为 Red Hat OpenShift AI 扩大与 Elasticsearch 向量数据库的合作

作者&#xff1a;来自 Elastic Aditya Tripathi 红帽和 Elastic 今天宣布开展合作&#xff0c;以便在 Red Hat OpenShift AI 上集成 Elasticsearch 向量数据库。 Red Hat OpenShift 用户现在可以通过红帽生态系统目录实施 Elasticsearch 以进行向量搜索和检索增强生成 (RAG) 应…

商机来了你能抓住吗?2024新商机!2024创业新风口!2024创业项目小成本!2024创业干什么最赚钱?

19世纪末&#xff0c;美国加利福尼亚州发现了黄金&#xff0c;出现了淘金热。有一位17岁的少年来到加州&#xff0c;是想加入淘金者的队伍&#xff0c;可看到金子没那么好淘&#xff0c;淘金的人很野蛮&#xff0c;他很害怕。这时&#xff0c;他看到淘金人在炎热的天气下干活口…