Qt扫盲-QTreeView 理论总结

QTreeView 理论使用总结

  • 一、概述
  • 二、快捷键绑定
  • 三、提高性能
  • 四、简单实例
    • 1. 设计与概念
    • 2. TreeItem类定义
    • 3. TreeItem类的实现
    • 4. TreeModel类定义
    • 5. TreeModel类实现
    • 6. 在模型中设置数据

一、概述

QTreeView实现了 model 中item的树形表示。这个类用于提供标准的层次列表,这些列表以前是由QListView类提供的,但是使用Qt的model/view体系结构提供的更灵活的方法。

QTreeView类是model/view类之一,是Qt model/view框架的一部分。
QTreeView实现了由QAbstractItemView类定义的接口,以允许它显示由QAbstractItemModel类派生的模型提供的数据。
构造显示模型数据的树状视图很简单。在下面的例子中,目录的内容由一个QFileSystemModel提供,并显示为一个树:

QFileSystemModel *model = new QFileSystemModel;
model->setRootPath(QDir::currentPath());
QTreeView *tree = new QTreeView(splitter);
tree->setModel(model);

model/view 体系结构确保树视图的内容随着模型的变化而更新。
有子item的item可以处于展开状态(可见子item)或折叠状态(隐藏子item)。当此状态发生变化时,将发出一个带有相关item的模型索引的collapse()或expanded()信号。

用于指示层次结构级别的缩进量由缩进属性控制。
树视图中的头文件是使用QHeaderView类构造的,可以使用header()->hide()隐藏。请注意,每个头部都配置了将其stretchLastSection属性设置为true,以确保视图不会浪费为其头部分配的任何空间。如果此值设置为true,则此属性将覆盖标题中最后一节设置的调整大小模式。
默认情况下,树视图中的所有列都是可移动的,除了第一列。要禁用这些列的移动,请使用QHeaderView的setSectionsMovable()函数。有关重新排列节的详细信息,请参见移动头节。

二、快捷键绑定

QTreeView支持一组键绑定,使用户能够在视图中导航并与item的内容交互:

功能
Up将光标移动到前一行同一列中的item。如果当前item的父item没有更多的行可导航,则光标移动到父item前面的兄弟item的最后一行中的相关item。
Down将光标移动到下一行同一列中的item。如果当前item的父item没有更多的行可导航,则光标移动到其父item后面的兄弟item的第一行中的相关item。
Left通过折叠分支隐藏当前item(如果存在)的子item。
Minus和左一样。
通过展开分支显示当前item(如果存在)的子item。
Plus和Right一样。
星号展开当前item及其所有子item(如果存在)。
PageUp将光标向上移动一页。
PageDown将光标向下移动一页。
Home将光标移动到模型中第一个顶级item的第一行同一列中的item。
End将光标移动到模型中最后一个顶级item的最后一行同一列中的item。
F2在可编辑模型中,这将打开当前item进行编辑。Escape键可用于取消编辑过程并恢复对所显示数据的任何更改。

三、提高性能

在显示大量item时,可以为视图提供有关其正在处理的数据的提示,以提高其性能。对于想要显示相等高度的item的视图,可以采用的一种方法是将uniformRowHeights属性设置为true。

四、简单实例

这个简单的树模型示例展示了如何使用Qt标准视图类的层次模型。
在这里插入图片描述

Qt的model/view体系结构为视图操作数据源中的信息提供了一种标准方式,它使用数据的抽象模型来简化和标准化访问数据的方式。简单模型将数据表示为一个项目表,并允许视图通过基于索引的系统访问这些数据。更一般地说,模型可以用树结构的形式来表示数据,它允许每个元素作为子项表的父元素。

在尝试实现树模型之前,有必要考虑数据是由外部来源提供的,还是由模型本身维护。因为我们操作数据后,model/view 会自动替我们去渲染数据。在这个例子中,我们将实现一个内部结构来保存数据(也就是model里面维护了数据),而不是讨论如何包装来自外部源的数据。

1. 设计与概念

我们用来表示数据结构的数据结构是由TreeItem对象构建的树。每个TreeItem代表树视图中的一个项,包含多个数据列。
在这里插入图片描述

  • 简单的树模型结构
    数据使用TreeItem对象存储在模型内部,这些对象以基于指针的树结构链接在一起。一般来说,每个TreeItem都有一个父项,并且可以有多个子项。然而,树结构中的根项没有父项,而且它永远不会在模型外部被引用。
    每个TreeItem都包含了其在树结构中的位置的信息。它可以返回其父项及其行号。使这些信息随时可用使模型的实现更容易。
    由于树视图中的每个项通常包含若干列数据(本例中为标题和摘要),因此很自然地将这些信息存储在每个项中。为简单起见,我们将使用一个QVariant对象的列表来存储项目中每一列的数据。

使用基于指针的树结构意味着,当将模型索引传递给视图时,我们可以记录索引中相应项的地址(参见QAbstractItemModel::createIndex()),并稍后使用QModelIndex::internalPointer()检索它。这使得编写模型更容易,并确保所有引用同一项的模型索引具有相同的内部数据指针。

有了适当的数据结构,我们可以使用最少的额外代码创建树模型,以向其他组件提供模型索引和数据。

2. TreeItem类定义

TreeItem类定义如下:

  class TreeItem{public:explicit TreeItem(const QVector<QVariant> &data, TreeItem *parentItem = nullptr);~TreeItem();void appendChild(TreeItem *child);TreeItem *child(int row);int childCount() const;int columnCount() const;QVariant data(int column) const;int row() const;TreeItem *parentItem();private:QVector<TreeItem*> m_childItems;QVector<QVariant> m_itemData;TreeItem *m_parentItem;};

这个类是一个基本的c++类。它不继承QObject,也不提供信号和插槽。它用于保存一个由 QVariant 组成的列表,其中包含列数据以及有关其在树结构中位置的信息。这些函数具有以下特性:

  • appendChildItem()方法在第一次构建模型时用于添加数据,在正常情况下不会用到。
  • child()和childCount()函数允许模型获取任何子项的信息。
  • 列数由columnCount()提供,每列的数据由data()函数获得。
  • 函数row()和parent()用于获取项的行号和父项。

父项和列的数据存储在parentItem和itemData私有成员变量中。childItems变量包含一个指向该元素自己的子项的指针列表。

3. TreeItem类的实现

构造函数只用于记录项的父元素以及与每一列相关联的数据。

TreeItem::TreeItem(const QVector<QVariant> &data, TreeItem *parent): m_itemData(data), m_parentItem(parent){}

指向属于该项的每个子项的指针将存储在childItems私有成员变量中。在调用类的析构函数时,必须删除这些元素,以确保它们的内存能被重用:

TreeItem::~TreeItem()
{qDeleteAll(m_childItems);
}

因为每个子项都是在模型初始填充数据时构建的,所以添加子项的函数很简单:

void TreeItem::appendChild(TreeItem *item)
{m_childItems.append(item);
}

当给定一个合适的行号时,每个元素都可以返回它的任何子项。
在这里插入图片描述

例如,在上图中,标记为“A”的项对应于row = 0的根项的子项,“B”项对应row = 1的“A”项的子项,“C”项对应row = 1的根项的子项。

child()函数返回子项列表中指定行号对应的子项:

  TreeItem *TreeItem::child(int row){if (row < 0 || row >= m_childItems.size())return nullptr;return m_childItems.at(row);}

子元素的数量可以通过childCount()得到:

  int TreeItem::childCount() const{return m_childItems.count();}

TreeModel使用这个函数来确定给定父元素项的行数。

row()函数报告了元素在父元素列表中的位置:

  int TreeItem::row() const{if (m_parentItem)return m_parentItem->m_childItems.indexOf(const_cast<TreeItem*>(this));return 0;}

注意,虽然根项(没有父项)被自动分配了行号0,但是这个信息从来没有被模型使用过。

列数可以通过函数columnCount()简单地返回。

  int TreeItem::columnCount() const{return m_itemData.count();}

列数据由data()函数返回。在使用数据访问容器之前会检查边界:

  QVariant TreeItem::data(int column) const{if (column < 0 || column >= m_itemData.size())return QVariant();return m_itemData.at(column);}

可以用parent()找到元素的父元素:

  TreeItem *TreeItem::parentItem(){return m_parentItem;}

请注意,由于模型中的根项没有父项,在这种情况下,此函数将返回0。在实现TreeModel::parent()函数时,我们需要确保模型能够正确地处理这种情况。

4. TreeModel类定义

TreeModel类定义如下:

  class TreeModel : public QAbstractItemModel{Q_OBJECTpublic:explicit TreeModel(const QString &data, QObject *parent = nullptr);~TreeModel();QVariant data(const QModelIndex &index, int role) const override;Qt::ItemFlags flags(const QModelIndex &index) const override;QVariant headerData(int section, Qt::Orientation orientation,int role = Qt::DisplayRole) const override;QModelIndex index(int row, int column,const QModelIndex &parent = QModelIndex()) const override;QModelIndex parent(const QModelIndex &index) const override;int rowCount(const QModelIndex &parent = QModelIndex()) const override;int columnCount(const QModelIndex &parent = QModelIndex()) const override;private:void setupModelData(const QStringList &lines, TreeItem *parent);TreeItem *rootItem;};

这个类类似于提供只读模型的QAbstractItemModel的大多数子类。只有构造函数和setupModelData()函数的形式是特定于这个模型的。此外,我们还提供了一个析构函数来在模型被销毁时进行清理。

5. TreeModel类实现

为简单起见,模型不允许编辑其数据。因此,构造函数接受一个参数,其中包含模型将与视图和委托共享的数据:

  TreeModel::TreeModel(const QString &data, QObject *parent): QAbstractItemModel(parent){rootItem = new TreeItem({tr("Title"), tr("Summary")});setupModelData(data.split('\n'), rootItem);}

由构造函数为模型创建根项。为了方便起见,此项只包含垂直标题数据。我们还用它来引用包含模型数据的内部数据结构,并且用它来表示模型中顶层项目的假想父元素。

模型的内部数据结构由setupModelData()函数填充。我们将在本文档的最后单独讨论这个函数。
析构函数确保在模型被销毁时删除根元素及其所有后代元素:

  TreeModel::~TreeModel(){delete rootItem;}

由于我们不能在模型构建和设置之后向其添加数据,这简化了管理内部项目树的方式。

模型必须实现index()函数,以便为视图和委托访问数据提供索引。当其他组件被它们的行号和列号以及它们的父模型索引引用时,就会为它们创建索引。如果将无效的模型索引指定为父索引,则由模型返回对应于模型中的顶级项的索引。
当提供模型索引时,我们首先检查它是否有效。如果不是,我们就认为引用的是顶级元素项;否则,使用internalPointer()函数从模型索引中获取数据指针,并使用它来引用TreeItem对象。请注意,我们构建的所有模型索引都将包含一个指向现有TreeItem的指针,因此我们可以保证任何有效的模型索引都将包含一个有效的数据指针。

  QModelIndex TreeModel::index(int row, int column, const QModelIndex &parent) const{if (!hasIndex(row, column, parent))return QModelIndex();TreeItem *parentItem;if (!parent.isValid())parentItem = rootItem;elseparentItem = static_cast<TreeItem*>(parent.internalPointer());TreeItem *childItem = parentItem->child(row);if (childItem)return createIndex(row, column, childItem);return QModelIndex();}

因为这个函数的row和column参数引用的是对应父元素项的子元素,所以可以使用TreeItem::child()函数来获取该元素项。

createIndex()函数用于创建要返回的模型索引。我们指定行号和列号,以及一个指向元素本身的指针。稍后可以使用模型索引来获取项目的数据。

定义TreeItem对象的方式使得编写parent()函数很容易:

  QModelIndex TreeModel::parent(const QModelIndex &index) const{if (!index.isValid())return QModelIndex();TreeItem *childItem = static_cast<TreeItem*>(index.internalPointer());TreeItem *parentItem = childItem->parentItem();if (parentItem == rootItem)return QModelIndex();return createIndex(parentItem->row(), 0, parentItem);}

我们只需要确保永远不会返回与根项对应的模型索引。为了与index()函数的实现方式保持一致,我们为模型中任何顶级元素的父元素返回一个无效的模型索引。

在创建要返回的模型索引时,我们必须指定父元素中的行号和列号。使用TreeItem::row()函数可以很容易地找到行号,但我们遵循约定,将父元素的列号指定为0。和index()函数一样,用createIndex()创建模型索引。

rowCount()函数返回给定模型索引对应的TreeItem子元素的个数,如果指定了无效索引,则返回顶层元素的个数:

  int TreeModel::rowCount(const QModelIndex &parent) const{TreeItem *parentItem;if (parent.column() > 0)return 0;if (!parent.isValid())parentItem = rootItem;elseparentItem = static_cast<TreeItem*>(parent.internalPointer());return parentItem->childCount();}

由于每个item管理自己的列数据,columnCount()函数必须调用item自己的columnCount()函数来确定给定的模型索引中有多少列。与rowCount()函数一样,如果指定了无效的模型索引,则返回的列数从根项开始确定:

  int TreeModel::columnCount(const QModelIndex &parent) const{if (parent.isValid())return static_cast<TreeItem*>(parent.internalPointer())->columnCount();return rootItem->columnCount();}

通过Data()从模型中获取数据。由于item管理自己的列,我们需要使用列号来通过TreeItem::data()函数取得数据:

  QVariant TreeModel::data(const QModelIndex &index, int role) const{if (!index.isValid())return QVariant();if (role != Qt::DisplayRole)return QVariant();TreeItem *item = static_cast<TreeItem*>(index.internalPointer());return item->data(index.column());}

请注意,我们在此实现中只支持DisplayRole,并且我们还为无效的模型索引返回无效的QVariant对象。
我们使用flags()函数来确保视图知道模型是只读的:

  Qt::ItemFlags TreeModel::flags(const QModelIndex &index) const{if (!index.isValid())return Qt::NoItemFlags;return QAbstractItemModel::flags(index);}

headerData()函数返回我们方便地存储在根项中的数据:

  QVariant TreeModel::headerData(int section, Qt::Orientation orientation,int role) const{if (orientation == Qt::Horizontal && role == Qt::DisplayRole)return rootItem->data(section);return QVariant();}

这些信息可以通过其他方式提供:可以在构造函数中指定,也可以硬编码到headerData()函数中。

6. 在模型中设置数据

我们使用setupModelData()函数在模型中设置初始数据(也就是输入如下的这些文件)。该函数解析文本文件,提取用于模型的文本字符串,并创建记录数据和整体模型结构的item对象。当然,这个函数的工作方式是特定于这个模型的。我们提供了以下对其行为的描述,并请读者参考示例代码本身以获取更多信息。

我们从一个如下格式的文本文件开始:
在这里插入图片描述

我们使用以下两条规则处理这个文本文件:

  • 对于每一行上的每一对字符串,在树结构中创建一个项(或节点),并将每个字符串放在项中的一列数据中。
  • 当某一行的第一个字符串相对于前一行的第一个字符串缩进时,将该项设置为前一项的子项。

为了确保模型正确工作,只需要用正确的数据和父项创建TreeItem的实例。

实现的效果就是如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97201.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#封装、继承和多态的用法详解

大家好&#xff0c;今天我们将来详细探讨一下C#中封装、继承和多态的用法。作为C#的三大面向对象的特性&#xff0c;这些概念对于程序员来说非常重要&#xff0c;因此我们将对每个特性进行详细的说明&#xff0c;并提供相应的示例代码。 目录 1. 封装&#xff08;Encapsulati…

【用unity实现100个游戏之14】Unity2d做一个建造与防御类rts游戏

前言 欢迎来到本次教程&#xff0c;我将为您讲解如何使用 Unity 引擎来开发一个建造与防御类 RTS&#xff08;即实时战略&#xff09;游戏。 在本教程中&#xff0c;我们将学习如何创建 2D 场景、设计 2D 精灵、制作 2D 动画、响应用户输入、管理游戏数据、以及其他有关游戏开…

机器学习7:pytorch的逻辑回归

一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类&#xff0c;其中概率用于确定二元结果&#xff0c;因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人…

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 八)

其他状态管理概述 除了前面章节提到的组件状态管理和应用状态管理&#xff0c;ArkTS还提供了Watch和$$来为开发者提供更多功能&#xff1a; Watch用于监听状态变量的变化。$$运算符&#xff1a;给内置组件提供TS变量的引用&#xff0c;使得TS变量和内置组件的内部状态保持同步…

Python环境安装

1、下载python安装包 &#xff08;1&#xff09;可以从官网下载需要的版本&#xff1a;Python Releases for Windows | Python.org &#xff08;2&#xff09;或者从我的百度网盘下载3.11.1版本&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1qNH3KU0iHIi-tS9wYBVrtQ …

【论文阅读】通过3D和2D网络的交叉示教实现稀疏标注的3D医学图像分割(CVPR2023)

目录 前言方法标注3D-2D Cross Teaching伪标签选择Hard-Soft Confidence Threshold Consistent Prediction Fusion 结论 论文&#xff1a;3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching between 3D and 2D Networks 代码&#xff1a;https://githu…

95、Spring Data Redis 之使用RedisTemplate 实现自定义查询 及 Spring Data Redis 的样本查询

Spring Data Redis 之使用RedisTemplate 实现自定义查询 Book实体类 原本的接口&#xff0c;再继承我们自定义的接口 自定义查询接口----CustomBookDao 实现类&#xff1a;CustomBookDaoImpl 1、自定义添加hash对象的方法 2、自定义查询价格高于某个点的Book对象 测试&a…

【JavaEE】线程安全的集合类

文章目录 前言多线程环境使用 ArrayList多线程环境使用队列多线程环境使用哈希表1. HashTable2. ConcurrentHashMap 前言 前面我们学习了很多的Java集合类&#xff0c;像什么ArrayList、Queue、HashTable、HashMap等等一些常用的集合类&#xff0c;之前使用这些都是在单线程中…

RabbitMQ之Fanout(扇形) Exchange解读

目录 基本介绍 适用场景 springboot代码演示 演示架构 工程概述 RabbitConfig配置类&#xff1a;创建队列及交换机并进行绑定 MessageService业务类&#xff1a;发送消息及接收消息 主启动类RabbitMq01Application&#xff1a;实现ApplicationRunner接口 基本介绍 Fa…

使用华为eNSP组网试验⑸-访问控制

今天练习使用华为sNSP模拟网络设备上的访问控制&#xff0c;这样的操作我经常在华为的S7706、S5720、S5735或者H3C的S5500、S5130、S7706上进行&#xff0c;在网络设备上根据情况应用访问控制的策略是一个网管必须熟练的操作&#xff0c;只是在真机上操作一般比较谨慎&#xff…

微服务技术栈-Gateway服务网关

文章目录 前言一、为什么需要网关二、Spring Cloud Gateway三、断言工厂和过滤器1.断言工厂2.过滤器3.全局过滤器4.过滤器执行顺序 四、跨域问题总结 前言 在之前的文章中我们已经介绍了微服务技术中eureka、nacos、ribbon、Feign这几个组件&#xff0c;接下来将介绍另外一个组…

Android源码下载

文章目录 一、Android源码下载 一、Android源码下载 AOSP 是 Android Open Source Project 的缩写。 git 常用命令总结 git 远程仓库相关的操作 # 查看 remote.origin.url 配置项的值 git config --list Android9.0之前代码在线查看地址&#xff1a;http://androidxref.com/ …

【LeetCode高频SQL50题-基础版】打卡第2天:第11-15题

文章目录 【LeetCode高频SQL50题-基础版】打卡第2天&#xff1a;第11-15题⛅前言 员工奖金&#x1f512;题目&#x1f511;题解 学生们参加各科测试的次数&#x1f512;题目&#x1f511;题解 至少有5名直接下属的经理&#x1f512;题目&#x1f511;题解 确认率&#x1f512;题…

使用python利用merge+sort函数对excel进行连接并排序

好久没更新了&#xff0c;天天玩短视频了。现在发现找点学习资料真的好难。 10.1期间偶然拿到一本书 本书是2022年出版的&#xff0c;看了一下不错&#xff0c;根据上面的案例结合&#xff0c;公司经营整合案例&#xff0c;分享一下。 数据内容来源于书中内容&#xff0c;仅供…

docker部署Vaultwarden密码共享管理系统

Vaultwarden是一个开源的密码管理器&#xff0c;它是Bitwarden密码管理器的自托管版本。它提供了类似于Bitwarden的功能&#xff0c;允许用户安全地存储和管理密码、敏感数据和身份信息。 Vaultwarden的主要特点包括&#xff1a; 1. 安全的数据存储&#xff1a;Vaultwarden使…

手机投屏电脑软件AirServer5.6.3.0最新免费版本下载

随着智能手机的普及&#xff0c;越来越多的人喜欢用手机观看视频、玩游戏、办公等。但是&#xff0c;有时候手机屏幕太小&#xff0c;不够清晰&#xff0c;也不方便操作。这时候&#xff0c;如果能把手机屏幕投射到电脑上&#xff0c;就可以享受更大的视野&#xff0c;更流畅的…

【javaweb】学习日记Day11 - tlias智能管理系统 - 文件上传 新增 修改员工 配置文件

目录 一、员工管理功能开发 1、新增员工 postman报错500的原因 &#xff08;1&#xff09;Controller类 &#xff08;2&#xff09;Service类 &#xff08;3&#xff09;Mapper类 2、根据ID查询 &#xff08;1&#xff09;Controller类 &#xff08;2&#xff09;Serv…

基于小波神经网络的网络流量预测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022A 3.部分核心程序 ........................................................... %% 总流量数据 input(:,1)dat…

如何保证 RabbitMQ 的消息可靠性?

项目开发中经常会使用消息队列来完成异步处理、应用解耦、流量控制等功能。虽然消息队列的出现解决了一些场景下的问题&#xff0c;但是同时也引出了一些问题&#xff0c;其中使用消息队列时如何保证消息的可靠性就是一个常见的问题。如果在项目中遇到需要保证消息一定被消费的…

(高阶) Redis 7 第18讲 RedLock 分布式锁

🌹 以下分享 RedLock 分布式锁,如有问题请指教。🌹🌹 如你对技术也感兴趣,欢迎交流。🌹🌹🌹 如有对阁下帮助,请👍点赞💖收藏🐱‍🏍分享😀 问题 分布式锁问题从(高阶) Redis 7 第17讲 分布式锁 实战篇_PJ码匠人的博客-CSDN博客 这篇文章来看,…