Go通过reflect.Value修改值

到目前为止,反射还只是程序中变量的另一种读取方式。然而,在本节中我们将重点讨论如何通过反射机制来修改变量。

回想一下,Go语言中类似x、x.f[1]和*p形式的表达式都可以表示变量,但是其它如x + 1和f(2)则不是变量。一个变量就是一个可寻址的内存空间,里面存储了一个值,并且存储的值可以通过内存地址来更新。

对于reflect.Values也有类似的区别。有一些reflect.Values是可取地址的;其它一些则不可以。考虑以下的声明语句:

 

x := 2 // value type variable? a := reflect.ValueOf(2) // 2 int no b := reflect.ValueOf(x) // 2 int no c := reflect.ValueOf(&x) // &x *int no d := c.Elem() // 2 int yes (x)

其中a对应的变量不可取地址。因为a中的值仅仅是整数2的拷贝副本。b中的值也同样不可取地址。c中的值还是不可取地址,它只是一个指针&x的拷贝。实际上,所有通过reflect.ValueOf(x)返回的reflect.Value都是不可取地址的。但是对于d,它是c的解引用方式生成的,指向另一个变量,因此是可取地址的。我们可以通过调用reflect.ValueOf(&x).Elem(),来获取任意变量x对应的可取地址的Value。

我们可以通过调用reflect.Value的CanAddr方法来判断其是否可以被取地址:

 

fmt.Println(a.CanAddr()) // "false" fmt.Println(b.CanAddr()) // "false" fmt.Println(c.CanAddr()) // "false" fmt.Println(d.CanAddr()) // "true"

每当我们通过指针间接地获取的reflect.Value都是可取地址的,即使开始的是一个不可取地址的Value。在反射机制中,所有关于是否支持取地址的规则都是类似的。例如,slice的索引表达式e[i]将隐式地包含一个指针,它就是可取地址的,即使开始的e表达式不支持也没有关系。以此类推,reflect.ValueOf(e).Index(i)对应的值也是可取地址的,即使原始的reflect.ValueOf(e)不支持也没有关系。

要从变量对应的可取地址的reflect.Value来访问变量需要三个步骤。第一步是调用Addr()方法,它返回一个Value,里面保存了指向变量的指针。然后是在Value上调用Interface()方法,也就是返回一个interface{},里面包含指向变量的指针。最后,如果我们知道变量的类型,我们可以使用类型的断言机制将得到的interface{}类型的接口强制转为普通的类型指针。这样我们就可以通过这个普通指针来更新变量了:

 

x := 2 d := reflect.ValueOf(&x).Elem() // d refers to the variable x px := d.Addr().Interface().(*int) // px := &x *px = 3 // x = 3 fmt.Println(x) // "3"

或者,不使用指针,而是通过调用可取地址的reflect.Value的reflect.Value.Set方法来更新对应的值:

 

d.Set(reflect.ValueOf(4)) fmt.Println(x) // "4"

Set方法将在运行时执行和编译时进行类似的可赋值性约束的检查。以上代码,变量和值都是int类型,但是如果变量是int64类型,那么程序将抛出一个panic异常,所以关键问题是要确保改类型的变量可以接受对应的值:

 

d.Set(reflect.ValueOf(int64(5))) // panic: int64 is not assignable to int

同样,对一个不可取地址的reflect.Value调用Set方法也会导致panic异常:

 

x := 2 b := reflect.ValueOf(x) b.Set(reflect.ValueOf(3)) // panic: Set using unaddressable value

这里有很多用于基本数据类型的Set方法:SetInt、SetUint、SetString和SetFloat等。

 

d := reflect.ValueOf(&x).Elem() d.SetInt(3) fmt.Println(x) // "3"

从某种程度上说,这些Set方法总是尽可能地完成任务。以SetInt为例,只要变量是某种类型的有符号整数就可以工作,即使是一些命名的类型、甚至只要底层数据类型是有符号整数就可以,而且如果对于变量类型值太大的话会被自动截断。但需要谨慎的是:对于一个引用interface{}类型的reflect.Value调用SetInt会导致panic异常,即使那个interface{}变量对于整数类型也不行。

 

x := 1 rx := reflect.ValueOf(&x).Elem() rx.SetInt(2) // OK, x = 2 rx.Set(reflect.ValueOf(3)) // OK, x = 3 rx.SetString("hello") // panic: string is not assignable to int rx.Set(reflect.ValueOf("hello")) // panic: string is not assignable to int var y interface{} ry := reflect.ValueOf(&y).Elem() ry.SetInt(2) // panic: SetInt called on interface Value ry.Set(reflect.ValueOf(3)) // OK, y = int(3) ry.SetString("hello") // panic: SetString called on interface Value ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"

当我们用Display显示os.Stdout结构时,我们发现反射可以越过Go语言的导出规则的限制读取结构体中未导出的成员,比如在类Unix系统上os.File结构体中的fd int成员。然而,利用反射机制并不能修改这些未导出的成员:

 

stdout := reflect.ValueOf(os.Stdout).Elem() // *os.Stdout, an os.File var fmt.Println(stdout.Type()) // "os.File" fd := stdout.FieldByName("fd") fmt.Println(fd.Int()) // "1" fd.SetInt(2) // panic: unexported field

一个可取地址的reflect.Value会记录一个结构体成员是否是未导出成员,如果是的话则拒绝修改操作。因此,CanAddr方法并不能正确反映一个变量是否是可以被修改的。另一个相关的方法CanSet是用于检查对应的reflect.Value是否是可取地址并可被修改的:

 

fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/96331.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

间隔分区 Interval Partition partition_name, interva

分区(Partition)一直是Oracle数据库引以为傲的一项技术,正是分区的存在让Oracle高效的处理海量数据成为可能,在Oracle 11g中,分区技术在易用性和可扩展性上再次得到了增强。在10g的Oracle版本中,要对分区表做调整,尤其…

QSqlTableModel使用简介

QSqlTableModel可以和QTableView共同使用,只需对QSqlTableModel类操作就可以实现读写数据库, 同时将数据显示在tableview中,相同的更改tableview中的值也可以直接同步到数据库中。QSqlTableModel类使用注意: QSqlTableModel::setH…

微服务moleculer03

1. Moleculer 目前支持SQLite,MySQL,MariaDB,PostgreSQL,MSSQL等数据库,这里以mysql为例 2. package.json 增加mysql依赖 "mysql2": "^2.3.3", "sequelize": "^6.21.3", &q…

Dijkstra 邻接表表示算法 | 贪心算法实现--附C++/JAVA实现源码

以下是详细步骤。 创建大小为 V 的最小堆,其中 V 是给定图中的顶点数。最小堆的每个节点包含顶点编号和顶点的距离值。 以源顶点为根初始化最小堆(分配给源顶点的距离值为0)。分配给所有其他顶点的距离值为 INF(无限)。 当最小堆不为空时,执行以下操作: 从最小堆中提取…

MIPI接口协议及规范理解

什么是MIPI接口 MIPI,英文全称为Mobile Industry Processor Interface,即移动行业处理器接口。它是MIPI联盟发起的为移动应用处理器制定的开放标准。MIPI接口是一种专为移动设备和嵌入式系统设计的串行通信接口,定义了一系列的接口标准&…

微服务学习--1入门

写在前面: 最近摆了几天,现在重新开始学习。《本文没啥用》。 文章目录 概念概括优劣势特征 SpringCloud 概念 概括 微服务技术是分布式架构的一种,因为一个机器的能力有限,需要集群来进行同时解决,但是分布式也就…

docker swarm安装指导

SWARM部署DOCKER集群 1. 简介............................................................................................................................ 3 2. 部署准备.........................................................................................…

解决报错:模块“react-redux“没有导出的成员“TypedUseSelectorHook”

在react整合typescript,redux时,写hook.ts时报这个错:模块"react-redux"没有导出的成员“TypedUseSelectorHook” 现象如下: 原因:react-redux版本太低,至少要升级到7.2.3以后才能包含TypedUseSelectorHook…

Java Thread类详解

🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开兴好久好久😎 📚系列专栏:Java全栈,…

十一工具箱流量主小程序源码

无授权,去过滤机制版本 看到网上发布的都是要授权的 朋友叫我把他去授权,能用就行 就把过滤去了 这样就不用授权 可以免费使用 白嫖党专属 一切接口可用,无需担心不能用 授权者不关站一直可以用 源码下载:https://download.csdn.…

二十九、高级IO与多路转接之epollreactor(收官!)

文章目录 一、Poll(一)定义(二)实现原理(三)优点(四)缺点 二、I/O多路转接之epoll(一)从网卡接收数据说起(二)如何知道接收了数据&…

Godot Identifier “File“ not declared in the current scope.

解决方案: f FileAccess.open(savedir, FileAccess.READ)

别人做的百度百科词条信息不全,如何更正自己的百度百科词条

很多人自己的百度百科词条是别人上传上去的,自己压根不知道,而且里面的信息内容要么不全,要么是有错漏的,但自己想要更正自己的百度百科词条又不知道如何更正,下面洛希爱做百科网和大家介绍一些百科经验知识。 首先百…

算法题:分发饼干

这个题目是贪心算法的基础练习题,解决思路是排序双指针谈心法,先将两个数组分别排序,优先满足最小胃口的孩子。(本题完整题目附在了最后面) 代码如下: class Solution(object):def findContentChildren(se…

react库的基础学习

React介绍 React.js是前端三大新框架:Angular.js、React.js、Vue.js之一,这三大新框架的很多理念是相同的,但是也有各自的特点。 React起源于Facebook的内部项目,因为该公司对市场上所有 JavaScript MVC 框架,都不满…

LCR 128.库存管理 I

​题目来源: leetcode题目,网址:LCR 128. 库存管理 I - 力扣(LeetCode) 解题思路: 数组可以分割成两段的升序连续子数组,找到两个子数组的开始元素并返回较小者即可。 解题代码: …

HDLbits: Edgedetect

module top_module (input clk,input [7:0] in,output [7:0] pedge );reg [7:0] in_old;always(posedge clk)beginin_old < in; end assign pedge < in & ~in_old; endmodule 对于边缘检测而言&#xff0c;若是0→1和1→0都检测则为in^in_old&#xf…

医学影像归档与通讯系统(PACS)系统源码 PACS三维图像后处理技术

医学影像归档与通讯系统&#xff08;PACS&#xff09;系统源码 PACS三维图像处理 医学影像归档与通讯系统&#xff08;PACS&#xff09;系统&#xff0c;是一套适用于从单一影像设备到放射科室、到全院级别等各种应用规模的医学影像归档与通讯系统。PACS集患者登记、图像采集、…

架构设计系列4:如何设计高性能架构

在架构设计系列1&#xff1a;什么是架构设计中&#xff0c;我们讲了架构设计的主要目的&#xff0c;是为了解决软件系统复杂度带来的问题&#xff0c;今天我们来聊聊软件系统复杂度的来源之一高性能。 一、什么是高性能架构&#xff1f; 要搞清楚什么是高性能架构&#xff0c…

ctfshow web入门 php特性 web131-web135

1.web131 和上题一样差不多&#xff0c;正则最大回溯次数绕过 import requests url"" data{f:very*250000360Dctfshow } rrequests.post(url,datadata) print(r.text)2.web132 通过扫描发现robots.txt,访问/admin发现源码 &&和||都是短路运算符 只要满足co…