【RK3588】YOLO V5在瑞芯微板子上部署问题记录汇总

YOLO V5训练模型部署到瑞芯微的板子上面,官方是有给出案例和转过详情的。并且也提供了Python版本的推理代码,以及C语言的代码。

但是,对于转换过程中的细节,哪些需要改?怎么改?如何改,和为什么这样改的问题,并没有给出详细的介绍。于是,本文就是对官方给出部分外的一个补充。这部分都是踩过坑的总结,相信会对你的操作会有较大帮助的。

一、从pytorchptrknn转换

  • 第一步: 使用yolov5提供的export.py函数导出yolov5.onnx模型
python3 export.py --weights yolov5s.pt --img-size 640 --include onnx
  • 第二步:使用onnxsim简化导出的yolov5.onnx模型

onnxsim是一个基于ONNX规范的工具,通过简化ONNX模型和优化ONNX模型,帮助用户减小模型大小、提高模型的推理速度和减少推理过程中的内存开销
onnxsim的工作原理是将一个ONNX模型简化成最少的节点,并优化这些节点,以最小化推理过程中的开销。
同时,onnxsim还可以处理支持的神经网络层类型,支持多个平台,例如:CPU,GPU, FPGA等。

onnxsim安装和使用:onnx-simplifier

pip3 install onnxsimThen:onnxsim input_onnx_model output_onnx_model
  • 第三步:要完全使用rknn提供的部署转换代码,需要根据简化后的onnx模型,选取合适层的输出,以替代以下代码中的‘378’,‘439’和‘500’,如下图onnx例子中的'onnx::Reshape_446',‘onnx::Reshape_484’,‘onnx::Reshape_522’。(这三个name,可能都是不一样的,是什么就填什么即可)
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['onnx::Reshape_446', 'onnx::Reshape_484', 'onnx::Reshape_522'])
if ret != 0:print('Load yolov5 failed!')exit(ret)
print('done')

采用Netron打开的onnx文件,如下:

1疑问:为什么不用最后合并后的输出结果?

因为,最后的形状不固定导致的,有可能5个框,有可能10个框。输出模型到固定大小,后续操作放到后处理,目的是为了加快模型的npu上的推理速度(这里是我的理解,不一定正确,欢迎补充)

PyTorch中,神经网络的输出形状通常是根据输入形状来自动计算的,而在 ONNX 中,输出形状需要在转换时进行显式指定,这是由于 ONNX 的静态图执行模型与 PyTorch 的动态图执行模型不同所致。
当你将PyTorch模型转换为 ONNX 模型时,你需要为 ONNX 模型中的每个输出定义固定的形状,以便在模型执行时为其分配正确的内存空间。如果输出形状不固定,那么 ONNX 运行时就需要在运行时动态调整输出形状,这将使得模型在部署时的性能受到影响。
因此,在转换 PyTorch 模型为 ONNX 模型时,你需要手动指定每个输出的固定形状,以便在执行时能够顺利运行。

Yolo v5的输出格式一般为a × b × c × 85的形式,其中:

  1. a*b*c表示框的数目
  2. 85则涵盖框的位置信息(xc,yc,w,h)、前景的置信度Pc80个类别的预测条件概率c1,...,c80。(4+1+80,无背景类)

如果是你自己的模型,可能是只有3个目标类别,那么最后就是4+1+3=8,这个值记得在onnx模型中查看到。

二、需要注意事项

2.1、 设定anchor

anchor的设定,在训练yolo v5模型时候,是可以设定自动适应,采用聚类的方式,通过标注的目标框的大小,给出anchor的值。在train.py中,noaotoanchor的默认为False,如果设定为True,则会使用默认的anchor设定。

所以,如果经过autoanchor,给出了新的anchor设定,那么在推理和转完rknn后的设定,都需要与之相匹配的anchor,这个很重要。

为什么官方和很多博客,都没有注意到这个问题呢?因为大多数情况下,aotoanchor并没有发挥作用。都是使用了默认的,导致很多人即便没有注意到这个问题,最后的结果也不差。

但是,如果是不一样的,结果就会比较差,这个值就需要对应的做修改了。

2.1.1、训练阶段记录

如果在训练阶段,你已经关注到autoAnchor的输出结果,可以在这里直接进行记录,在terminal打印的内容,大致如下:

AutoAnchor: 3.60 anchors/target, 0.974 Best Possible Recall (BPR). Anchors are a poor fit to dataset ⚠, attempting to improve...
AutoAnchor: WARNING ⚠ Extremely small objects found: 764 of 27545 labels are <3 pixels in size
AutoAnchor: Running kmeans for 9 anchors on 27522 points...
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.8052: 100%|██████████| 1000/1000 00:10
AutoAnchor: thr=0.25: 0.9996 best possible recall, 5.11 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.358/0.805-mean/best, past_thr=0.532-mean: 5,5, 7,8, 11,11, 17,17, 28,28, 41,37, 56,56, 79,82, 143,140

2.1.2、pt文件查询记录

查询autoAnchor记录到.pt文件内的anchor设定,如下:

import torch
import sys
sys.path.append("path/yolov5-master")
weights = 'best.pt'
model = torch.load(str(weights[0] if isinstance(weights, list) else weights), map_location='cpu')
model1 = model['ema' if model.get('ema') else 'model']
model2 = model1.float().fuse().model.state_dict()for k,v in model2.items():if 'anchor' in k:# print(k)# print(v)print(v.numpy().flatten().tolist())

打印结果:

Fusing layers... 
[0.54345703125, 0.58251953125, 0.8525390625, 0.88818359375, 1.353515625, 1.318359375, 1.0859375, 1.0380859375, 1.75390625, 1.705078125, 2.38671875, 2.462890625, 1.7421875, 1.6787109375, 2.578125, 2.458984375, 3.904296875, 3.75]
[4.34765625, 4.66015625, 6.8203125, 7.10546875, 10.828125, 10.546875, 17.375, 16.609375, 28.0625, 27.28125, 38.1875, 39.40625, 55.75, 53.71875, 82.5, 78.6875, 124.9375, 120.0]
YOLOv5m summary: 308 layers, 21037791 parameters, 0 gradients

第二行是真的,需要取整。第一行…

经过我的发现,如果你打印的anchor就一行,那么可能是默认的anchor(默认使用COCO数据集的anchor),就是good fit to dataset,也就是默认的:

[[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45],[59, 119],
[116, 90], [156, 198], [373, 326]]

2.2、rk3588推理性能

yolo v5m 量化前性能:

推理性能:Performance                              
Total Time(us): 194162
FPS: 5.15占用内存:Memory Profile Info Dump                  NPU model memory detail(bytes):Total Weight Memory: 39.83 MiBTotal Internal Tensor Memory: 19.50 MiBTotal Memory: 59.33 MiB

量化后性能

推理性能:Performance                              
Total Time(us): 137508
FPS: 7.27占用内存:Memory Profile Info Dump                  
NPU model memory detail(bytes):Total Weight Memory: 20.03 MiBTotal Internal Tensor Memory: 8.75 MiBTotal Memory: 28.78 MiB

总的来说:

  • 模型时间效率上,量化后能降低30%194ms137ms
  • 占用内存上,量化后减少50%59Mib29Mib

三、C/C++ API部署

  • 目标检测 YOLOv5 - 基于 瑞芯微 Rockchip RKNN C API 实现 ----------- github代码

  • yolov8 瑞芯微 RKNN 的 C++部署------------- github代码

上述两个参考链接,基本囊括了一下几个部分:

  1. rknn模型转换
  2. Python rknn推理
  3. c/c++ rknn推理( YOLO v5部分是瑞芯微官方开放的代码)

如果你也是参考瑞芯微官方的C API代码,那么替换上你的模型后,有几个地方需要修改:

  1. 输入图像大小要改
  2. anchor尺寸要改
    const int anchor0[6] = {4, 5, 7, 7, 11, 11};
    const int anchor1[6] = {17, 17, 28, 27, 38, 39};
    const int anchor2[6] = {56, 54, 83, 79, 125, 120};
  3. 前景box阈值修改
    const float box_conf_threswin = 0.25;
  4. nms阈值修改
    const float nms_threswin = 0.1;
  5. 类别置信度重新调整
    objProbs.push_back(current_prob*box_confidence);
  6. 针对各个类,采用不同的阈值(待补充,这部分瑞芯微未采用这种二次过滤方式)

尤其是anchor这里,如果设定的不对,那么输出的结果就会非常的奇怪。如果是对的,那么差异性相对会小很多(和本地pt测试结果对比)。

四、总结

本文是对YOLO V5模型部署到瑞芯微板子上遇到的问题汇总。当然可能还会存在其他的更多问题,但是暂时还没有遇到,所以后面如果还会遇到什么问题,还会补充到这里。

如果你也正在做这块,并且遇到了问题,可以评论交流。目前还发现就是转模型后的评估问题,这个后面也会按照官方教程进行测试,这是下一篇的预告,期待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/96157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1392. 最长快乐前缀

链接&#xff1a; 1392. 最长快乐前缀 题解&#xff1a; class Solution { public:string longestPrefix(string s) {if (s.size() < 0) {return "";}int MOD 1e9 7;// 构建26的n次方&#xff0c;预处理std::vector<long> pow26(s.size());pow26[0] 1…

vue3中使用return语句返回this.$emit(),在同一行不执行,换行后才执行,好奇怪!

今天练习TodoList任务列表案例,该案例效果如图所示&#xff1a; 此案例除了根组件App.vue&#xff0c;还有TodoList、TodoInput、TodoButton三个子组件。 因为有视频讲解&#xff0c;在制作TodoList、TodoInput时很顺利&#xff0c;只是在完成TodoButton这个组件时出了点问题…

《protobuf》基础语法3

文章目录 默认值更新规则保留字段未知字段 默认值 在反序列化时&#xff0c;若被反序列化的二进制序列中不包含某个字段&#xff0c;则在反序列化时&#xff0c;就会设置对应默认值。不同的类型默认值不同&#xff1a; 类型默认值字符串“”布尔型false数值类型0枚举型0设置了…

微信开放平台第三方代小程序开发,授权事件、消息与事件通知总结

大家好&#xff0c;我是小悟 时间过得真快&#xff0c;转眼就到了国庆节尾巴&#xff0c;小伙伴们吃好喝好玩好了么。 关于微信开放平台第三方代小程序开发的两个事件接收推送通知&#xff0c;是开放平台代小程序实现业务的重要功能。 授权事件推送&#xff0c;事件类型以In…

ssm+vue的培训机构运营管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的培训机构运营管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结…

二分查找:34. 在排序数组中查找元素的第一个和最后一个位置

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《算法》 文章目录 前言一、题目解析二、解题思路1. 暴力查找2. 一次二分查找 部分遍历3. 两次二分查找分别查找左右端点1.查找区间左端点2. 查找区间右端点 三、代码实现总结 前言 本篇文…

蓝桥杯每日一题2023.10.6

题目描述 门牌制作 - 蓝桥云课 (lanqiao.cn) 题目分析 #include<bits/stdc.h> using namespace std; int ans; int main() {for(int i 1; i < 2020; i ){int x i;while(x){int a x % 10;if(a 2)ans ;x / 10;}}cout << ans;return 0; } 题目描述 既约分数…

C++设计模式-桥接(Bridge)

目录 C设计模式-桥接&#xff08;Bridge&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-桥接&#xff08;Bridge&#xff09; 一、意图 将抽象部分与它的实现部分分离&#xff0c;使它们都可以独立地变化。 二、适用性 你不希望在抽象和它…

Spring Cloud Gateway网关中各个过滤器的作用与介绍

文章目录 1. Route To Request URL Filter&#xff08;路由过滤器&#xff09;2. Gateway Filter&#xff08;全局过滤器&#xff09;3. Pre Filter&#xff08;前置过滤器&#xff09;4. Post Filter&#xff08;后置过滤器&#xff09;5. Error Filter&#xff08;错误过滤器…

Linux中的wc命令

2023年10月6月&#xff0c;周五晚上 目录 wc命令的主要功能和用法如下:统计文件行数、字数和字节数只统计行数只统计字数只统计字节数 wc命令在Linux/Unix系统中是word count的缩写,它用来统计文件的行数、字数和字节数。 wc命令的主要功能和用法如下: 统计文件行数、字数和字…

【C++设计模式之状态模式:行为型】分析及示例

简介 状态模式&#xff08;State Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许对象在内部状态改变时改变其行为&#xff0c;看起来就像是改变了其类。状态模式将对象的状态封装成不同的类&#xff0c;并使得对象在不同状态下有不同的行为。 描述 状态模式通过…

Qt之显示PDF文件

之前使用过mupdf库&#xff0c;能够成功显示pdf&#xff0c;但是我用着有BUG&#xff0c;不太理解它的代码&#xff0c;搞了好久都不行。后面又试了其他库&#xff0c;如pdfium、popler、下载了很多例程&#xff0c;都跑不起来&#xff01;后面偶然得知xpdf库&#xff0c;看起来…

C++-封装unordered

本期我们来封装实现unordered系列&#xff0c;需要前置知识&#xff0c;没有看过哈希的建议先看看哈希&#xff0c;而且哈希的代码都在这里面&#xff0c;一会要用到 C-哈希Hash-CSDN博客 目录 代码实现 迭代器 const迭代器 全部代码 代码实现 首先我们要把V改为T&#xff…

2023-10-06 LeetCode每日一题(买卖股票的最佳时机含手续费)

2023-10-06每日一题 一、题目编号 714. 买卖股票的最佳时机含手续费二、题目链接 点击跳转到题目位置 三、题目描述 给定一个整数数组 prices&#xff0c;其中 prices[i]表示第 i 天的股票价格 &#xff1b;整数 fee 代表了交易股票的手续费用。 你可以无限次地完成交易&…

STM32复习笔记(一):软件配置工程创建

目录 Preface&#xff1a; Hardware-Configuration & Software-Environment&#xff1a; &#xff08;一&#xff09;新建项目工程 &#xff08;二&#xff09;工程配置 &#xff08;三&#xff09;配置外设 &#xff08;四&#xff09;项目管理 &#xff08;五&…

区别对比表:阿里云轻量服务器和云服务器ECS对照表

阿里云轻量应用服务器和云服务器ECS区别对照表&#xff0c;一看就懂的适用人群、使用场景、优缺点、使用限制、计费方式、网路和镜像系统全方位对比&#xff0c;阿里云服务器网分享ECS和轻量应用服务器区别对照表&#xff1a; 目录 轻量应用服务器和云服务器ECS区别对照表 轻…

51单片机音乐闹钟秒表倒计时整点报时多功能电子钟万年历数码管显示( proteus仿真+程序+原理图+报告+讲解视频)

51单片机音乐闹钟秒表倒计时整点报时多功能电子钟万年历数码管显示( proteus仿真程序原理图报告讲解视频&#xff09; 讲解视频1.主要功能&#xff1a;2.仿真3. 程序代码4.原理图5. 设计报告6. 设计资料内容清单 51单片机音乐闹钟秒表倒计时整点报时多功能电子钟万年历数码管显…

MySQL视图、用户管理

目录 视图概念和操作 视图基本操作 视图规则和限制 用户管理 用户 视图概念和操作 什么是视图&#xff1f; 视图是一个虚拟表&#xff0c;由一个或多个基本表的查询结果组成&#xff08;视图是存储在数据库中的查询的SQL 语句&#xff0c;不在数据库中以存储的数据值集形式…

Verilator: sh: 1: exec: < PATHNAME >: not found

事出有因 I assumed that I install verilator via git clone its source, so I need to set the export VERILATOR_ROOT. At first, due to laziness, I just copy the code directly to my ubuntu. so stupid I am!!! Then, I recoginzed that the pathname is not real, …

wireshark of tshark tools v3.4.0版本 支持json

tshark(1) Install tshark (Wireshark) Ver.3.4.0 on CentOS7 --It must be "ps", "text", "pdml", "psml" or "fields". TCP 协议中的三次握手和四次挥手是 TCP 连接建立和关闭的过程。 三次握手 客户端向服务器发送 SYN…