频次直方图、KDE和密度图


Seaborn的主要思想是用高级命令为统计数据探索和统计模型拟合创建各种图形,下面将介绍一些Seaborn中的数据集和图形类型。

虽然所有这些图形都可以用Matplotlib命令实现(其实Matplotlib就是Seaborn的底层),但是用 Seaborn API会更方便。

频次直方图、KDE和密度图

在进行统计数据可视化时,我们通常想要的就是频次直方图和多变量的联合分布图。在Matplotlib里面我们已经见过,相对比较简单:

 
  1. data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], size=2000)
  2. data = pd.DataFrame(data, columns=['x', 'y'])
  3. for col in 'xy':
  4. plt.hist(data[col], normed=True, alpha=0.5)

除了频次直方图,我们还可以用KDE获取变量分布的平滑估计。在seaborn通过sns.kdeplot来实现:

 
  1. for col in 'xy':
  2. sns.kdeplot(data[col], shade=True)

使用distplot可以将频次直方图和KDE结合起来:

 
  1. sns.distplot(data['x'])
  2. sns.distplot(data['y'])

如果向kdeplot输入的是二维数据集,那么就可以获得一个二维数据可视化图:sns.kdeplot(data)

矩阵图

当我们需要对多维数据进行可视化是,最终都要使用矩阵图,矩阵图对于探索多维数据不同维度间的相关性非常有效。

下面将用鸢尾花数据集来演示,其中有三种鸢尾花的花瓣与花萼数据:

 
  1. data = pd.read_csv("iris.csv")
  2. sns.pairplot(data,hue="species") #hue 选择分类列

分面频次直方图

有时观察数据最好的方法就是借助数据子集的频次直方图,SeabornFacetGrid函数让这件事变得非常简单。

来看看某个餐厅统计的服务员收取小费的数据:

 
  1. tips = pd.read_csv('tips.csv')
  2. g = sns.FacetGrid(tips, col="time", row="smoker")
  3. g = g.map(plt.hist, "total_bill", color="r")

条形图

对于时间序列数据可以使用sns.factorplot画出条形图,下面将使用行星数据来演示:

 
  1. planets = pd.read_csv('planets.csv')
  2. with sns.axes_style('white'):
  3. g = sns.factorplot("year", data=planets, aspect=2,
  4. kind="count", color='steelblue')
  5. g.set_xticklabels(step=5)

还可以对用不同方法发现行星的数量:

 
  1. with sns.axes_style('white'):
  2. g = sns.factorplot("year", data=planets, aspect=4.0, kind='count',
  3. hue='method', order=range(2001, 2015))
  4. g.set_ylabels('Number of Planets Discovered')

折线图

seaborn绘制折线图使用lineplot函数,该函数所传数据必须为一个pandas数组,这一点跟matplotlib里有较大的区别,并且一开始使用较为复杂。

首先sns.lineplot里有几个参数值得注意:

  • x:plot图的xlabel

  • y:plot图的ylabel

  • ci:与估计器聚合时绘制的置信区间的大小;

  • data: 所传入的pandas数组。

 
  1. x = np.linspace(100, 50, 6)
  2. y = np.array([0.194173876, 0.161086478, 0.138896531, 0.129826697, 0.133716787, 0.152458326])
  3. summary = []
  4. for i in range(6):
  5. x_t = x[i]
  6. y_t = y[i]
  7. summary.append([x_t, y_t])
  8. data =pd.DataFrame(summary )
  9. sns.lineplot(x=0,y=1,ci=None,data=data)

编程要求

BasemapMatplotlib的一个子包,负责地图绘制。在数据可视化过程中,我们常需要将数据在地图上画出来。

比如说我们在地图上画出城市人口,飞机航线,军事基地,矿藏分布等等。这样的地理绘图有助于读者理解空间相关的信息。

  • 适用场景:适用于有空间位置的数据集。

安装和使用

相对于其他工具Basemap用起来有点笨重,就算做点儿简单的可视化图也需要花费比预期更长的时间。

在处理比较复杂的地图可视化任务时,更现代的解决方案可能会更适用一些,比如leafletGoogle Maps API。然而,Basemap 符合Python用户的使用习惯。

basemap并没有集成到matplotlib中,需要我们手动安装,basemap安装起来很简单,这里就不在说明。

安装并导入basemap工具箱后,只需要用几行代码就可以画出地理图:

 
  1. import matplotlib.pyplot as plt
  2. from mpl_toolkits.basemap import Basemap#导入工具包
  3. plt.figure(figsize=(8, 8))
  4. m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
  5. m.bluemarble(scale=0.5)
  6. plt.show()

运用Basemap函数我们可以在绘图区域中绘制地理信息相关的图像,当参数 projection的值为'ortho'时,我们将得到一个如上图所示的地球仪截面。 将参数projection的值设置为lcc时,我们可以通过经纬度设置来得到某一区域的局部地图:

 
  1. fig = plt.figure(figsize=(8, 8))
  2. m = Basemap(projection='lcc', resolution=None,width=8E6,height=8E6,lat_0=45, lon_0=-100,)m.etopo(scale=0.5, alpha=0.5)
  3. # 将经纬度映射为 (x, y) 坐标,用于绘制图像
  4. x, y = m(-122.3, 47.6)
  5. plt.plot(x, y, 'ok', markersize=5)
  6. plt.text(x, y, ' Seattle', fontsize=12)

这里使用了两个额外参数,它们用来表示地图中心的纬度(lat_0)和经度( lon_0)。

地图投影

由于不可能把地表完美反映到二维平面上,所有的地图都是各种各样扭曲的产物,把这些扭曲的产物抹平到平面坐标系的过程,称为投影。

Basemap提供了几十种不同的投影的实现。

投影简写-全称对照:

简写全称
cylCylindrical Equidistant
mercMercator
tmercTransverse Mercator
omercOblique Mercator
millMiller Cylindrical
gallGall Stereographic Cylindrical
ceaCylindrical Equal Area
lccLambert Conformal
laeaLambert Azimuthal Equal Area
nplaeaNorth-Polar Lambert Azimuthal
splaeaSouth-Polar Lambert Azimuthal
eqdcEquidistant Conic
aeqdAzimuthal Equidistant
npaeqdNorth-Polar Azimuthal Equidistant
spaeqdSouth-Polar Azimuthal Equidistant
aeaAlbers Equal Area
stereStereographic
npstereNorth-Polar Stereographic
spstereSouth-Polar Stereographic
cassCassini-Soldner
polyPolyconic
orthoOrthographic
geosGeostationary
nsperNear-Sided Perspective
sinuSinusoidal
mollMollweide
hammerHammer
robinRobinson
kav7Kavrayskiy VII
eck4Eckert IV
vandgvan der Grinten
mbtfpqMcBryde-Thomas Flat-Polar Quartic
gnomGnomonic
rotpoleRotated Pole

下面我们对一常用的投影进行简单的演示。定义一个可以画带经纬线地图的简便方法:

 
  1. def draw_map(m, scale=0.2):
  2. # 画地貌晕渲图
  3. m.shadedrelief(scale=scale)
  4. # 用字典表示经纬度
  5. lats = m.drawparallels(np.linspace(-90, 90, 13))
  6. lons = m.drawmeridians(np.linspace(-180, 180, 13))
  7. # 字典的键是plt.Line2D示例
  8. lat_lines = chain(*(tup[1][0] for tup in lats.items()))
  9. lon_lines = chain(*(tup[1][0] for tup in lons.items()))
  10. all_lines = chain(lat_lines, lon_lines)
  11. # 用循环将所有线设置成需要的样式
  12. for line in all_lines:
  13. line.set(linestyle='-', alpha=0.3, color='w')

圆柱投影是最简单的地图投影类型,纬度线与经度线分别映射成水平线与竖直线。 采用这种投影类型的话,赤道区域的显示效果非常好,但是南北极附近的区域就会严重变形。

 
  1. fig = plt.figure(figsize=(8, 6), edgecolor='w')
  2. m = Basemap(projection='cyl', resolution=None,
  3. llcrnrlat=-90, urcrnrlat=90,
  4. llcrnrlon=-180, urcrnrlon=180, )
  5. draw_map(m)

这里basemap参数设置了左下角(llcrnr)和右上角(urcrnr)纬度(lat)和经度(lon)。不同的投影都有各种的优劣,大家之后可以多多尝试。

地图背景

basemap程序包中有许多实用的函数,可以画出各种地形的轮廓,如陆地、海洋、湖泊、河流、各国的政治分界线。

常用画图函数:

函数说明
drawcoastlines()绘制大陆海岸线
drawlsmask()为陆地与海洋设置填充色,从而可以在陆地或海洋投影其他图像
drawmapboundary()绘制地图边界,包括为海洋填充颜色
drawrivers()绘制河流
fillcontinents()用一种颜色填充大陆,用另一种颜色填充湖泊(可选)
drawcountries()绘制国界线
drawstates()绘制美国州界线
drawcounties()绘制美国县界线
drawgreatcircle()在两点之间绘制一个大圆
drawparallels()绘制纬线
drawmeridians()绘制经线
drawmapscale()在地图上绘制一个线性比例尺
bluemarble()绘制NASA 蓝色弹珠地球投影
shadedrelief()在地图上绘制地貌晕渲图
etopo()在地图上绘制地形晕渲图
warpimage()将用户提供的图像投影到地图上

如果要使用边界特征,就必须设置分辨率。通过resolution来设置分辨率,取值为c(原始分辨率)、l(低分辨率)、i(中分辨率)、h(高分辨率)、f(全画质分辨率)。

来看看两种不同分辨率的绘制效果:

 
  1. fig, ax = plt.subplots(1, 2, figsize=(12, 8))
  2. for i, res in enumerate(['l', 'h']):
  3. m = Basemap(projection='gnom', lat_0=57.3, lon_0=-6.2,
  4. width=90000, height=120000, resolution=res, ax=ax[i])
  5. m.fillcontinents(color="#FFDDCC", lake_color='#DDEEFF')
  6. m.drawmapboundary(fill_color="#DDEEFF")
  7. m.drawcoastlines()
  8. ax[i].set_title("resolution='{0}'".format(res));
  9. plt.show()

可以看出低分辨率不适合这个缩放,低分辨率适合呈现全局视角,而且加载速度比高分辨率更快。要呈现某一视角的适合,最好先从一个能快速呈现的分辨率开始,然后不断提高分辨率直到满意为止。

在地图上画数据

basemap还可以以地图为背景,在这上面画各种数据。basemap实例中许多方法都是与地图有关的函数。这些函数与标准matplotlib函数的用法类似,只是多了一个参数latlon。如果设置为true表示使用原来的经纬度坐标,不使用投影(x,y)坐标。

示例如下:

 
  1. import pandas as pd
  2. cities = pd.read_csv('california_cities.csv')
  3. # 提取我们感兴趣的数据
  4. lat = cities['latd'].values
  5. lon = cities['longd'].values
  6. population = cities['population_total'].values
  7. area = cities['area_total_km2'].values
  8. # 1. 绘制地图背景
  9. fig = plt.figure(figsize=(8, 8))
  10. m = Basemap(projection='lcc', resolution='h',
  11. lat_0=37.5, lon_0=-119,
  12. width=1E6, height=1.2E6)
  13. m.shadedrelief()
  14. m.drawcoastlines(color='gray')
  15. m.drawcountries(color='gray')
  16. m.drawstates(color='gray')
  17. # 2. 绘制城市数据的散点图,其中颜色反映人口
  18. # 尺寸反映面积
  19. m.scatter(lon, lat, latlon=True,
  20. c=np.log10(population), s=area,
  21. cmap='Reds', alpha=0.5)
  22. # 3. 创建颜色条和图例
  23. plt.colorbar(label=r'$\log_{10}({\rm population})$')
  24. plt.clim(3, 7)
  25. # 使用虚拟的点生成图例
  26. for a in [100, 300, 500]:
  27. plt.scatter([], [], c='k', alpha=0.5, s=a,
  28. label=str(a) + ' km$^2$')
  29. plt.legend(scatterpoints=1, frameon=False,
  30. labelspacing=1, loc='lower left');

编程要求

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/96008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM+Vue的鲜花销售系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用Vue技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

Kafka快速实战以及基本原理详解

这一部分主要是接触 Kafka ,并熟悉 Kafka 的使用方式。快速熟练的搭建 kafka 服务,对于快速验证一些基于Kafka 的解决方案,也是非常有用的。 一、 Kafka 介绍 ChatGPT 对于 Apache Kafka 的介绍: 1 、 MQ 的作用 MQ :…

【AI视野·今日NLP 自然语言处理论文速览 四十九期】Fri, 6 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 6 Oct 2023 Totally 44 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning Authors Ke Wang, Houxi…

【Java 进阶篇】使用 JDBCTemplate 执行 DQL 语句详解

在前面的文章中,我们已经学习了如何使用 Spring 的 JDBCTemplate 执行 DML(Data Manipulation Language)操作,包括插入、更新和删除操作。现在,让我们来深入了解如何使用 JDBCTemplate 执行 DQL(Data Query…

Youtube视频下载工具分享-油管视频,音乐,字幕下载方法汇总

YouTube视频下载方法简介 互联网上存在很多 YouTube 下载工具,但我们经常会发现自己收藏的工具没过多久就会失效,我们为大家整理的这几种方法,是存在时间较久并且亲测可用的。后续如果这些工具失效或者有更好的工具,我们也会分享…

算法通过村第十二关-字符串|白银笔记|经典面试题

文章目录 前言1. 反转问题1.1 反转字符串1.2 k个一组反转1.3 仅仅反转字母1.3.1 采用栈实现操作1.3.2 采用双指针实现操作 1.4 反转字符串里面的单词1.4.1 使用语言提供的方法来解决(内置API)1.4.2 如何优雅自己实现上述功能 2. 验证回文串3. 字符串中的第一个唯一字符4. 判断是…

GitHub爬虫项目详解

前言 闲来无事浏览GitHub的时候,看到一个仓库,里边列举了Java的优秀开源项目列表,包括说明、仓库地址等,还是很具有学习意义的。但是大家也知道,国内访问GitHub的时候,经常存在访问超时的问题,…

鸡群优化(CSO)算法(含MATLAB代码)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年…

《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景 机器学习模型对数据的分析具有很大的优势,很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。 对于安全分析的一般背景就是认为有n方有敏感数据,并且不愿意分享他们的数据,但可以分享聚合计算后的结果。 联…

【算法练习Day13】二叉树的层序遍历翻转二叉树对称二叉树

​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:练题 🎯长路漫漫浩浩,万事皆有期待 文章目录 二叉树的层序遍历翻转二叉树…

【二】spring boot-设计思想

spring boot-设计思想 简介:现在越来越多的人开始分析spring boot源码,拿到项目之后就有点无从下手了,这里介绍一下springboot源码的项目结构 一、项目结构 从上图可以看到,源码分为两个模块: spring-boot-project&a…

ipa文件怎么把应用上架到苹果ios系统下载的App Store商城

注册为苹果开发者:首先,您需要注册为苹果开发者。前往苹果开发者网站(https://developer.apple.com/),点击"Enroll"按钮,并按照相关步骤注册和付费(开发者账号需要年度费用&#xff0…

SpringCloud Alibaba - Seata 四种分布式事务解决方案(TCC、Saga)+ 实践部署(下)

目录 一、Seata 分布式解决方案 1.1、TCC 模式 1.1.1、TCC 模式理论 对比 TCC 和 AT 模式的一致性和隔离性 TC 的工作模型 1.2.2、TCC 模式优缺点 1.2.3、TCC 模式注意事项:空回滚 1.2.4、TCC 模式注意事项:业务悬挂 1.2.5、实现 TCC 模式 案例…

(六)正点原子STM32MP135移植——内核移植

目录 一、概述 二、编译官方代码 三、移植 四、编译 一、概述 前面已经移植好了TF-A、optee、u-boot,在u-boot能正常跑起来的情况下,现在来移植内核。 二、编译官方代码 进入kernel目录 2.1 解压源码、打补丁 /* 解压源码 */ tar xf linux-6.1.28.…

【Go语言实战】(25) 分布式算法 MapReduce

MapReduce 写在前面 身为大数据专业的学生,其实大学我也多多少少接触过mapreduce,但是当时觉得这玩意太老了,觉得这和php一样会被时代淘汰。只能说当时确实太年轻了,没有好好珍惜那时候的学习资源… 现在回过头来看mapreduce&a…

想做好接口测试,先把这些概念搞清楚了

接口一般来说有两种,一种是程序内部的接口,一种是系统对外的接口。 系统对外的接口 比如你要从别的网站或服务器上获取资源或信息,别人肯定不会把数据库共享给你,他只能给你提供一个他们写好的方法来获取数据,你引用…

【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类

一、说明 NLP上的许多创新是如何将上下文添加到词向量中。常见的方法之一是使用递归神经网络

数据结构之带头双向循环链表

目录 链表的分类 带头双向循环链表的实现 带头双向循环链表的结构 带头双向循环链表的结构示意图 空链表结构示意图 单结点链表结构示意图 多结点链表结构示意图 链表创建结点 双向链表初始化 销毁双向链表 打印双向链表 双向链表尾插 尾插函数测试 双向链表头插 …

如何选择合适的自动化测试工具?

自动化测试是高质量软件交付领域中最重要的实践之一。在今天的敏捷开发方法中,几乎任一软件开发过程都需要在开发阶段的某个时候进行自动化测试,以加速回归测试的工作。自动化测试工具可以帮助测试人员以及整个团队专注于自动化工具无法处理的各自任务&a…

【数据结构---排序】很详细的哦

本篇文章介绍数据结构中的几种排序哦~ 文章目录 前言一、排序是什么?二、排序的分类 1.直接插入排序2.希尔排序3.选择排序4.冒泡排序5.快速排序6.归并排序总结 前言 排序在我们的生活当中无处不在,当然,它在计算机程序当中也是一种很重要的操…