STM32HAL库CRC学习及测试记录

STM32HAL库CRC学习及测试记录

  • 1.CRC的校验原理
  • 2.基本原理
  • 3.几个基本概念
    • 13.1.1 CRC检验码的计算
    • 13.1.2 错误检测
    • 13.2 STM32中的CRC
  • 4.CRC功能描述
  • 5.STM32Cube生成工程
  • 6.看官方说如何使用这个驱动程序
  • 7.实验现象

1.CRC的校验原理

循环冗余校验(CRC)计算单元是根据固定的生成多项式得到任一32位全字的CRC计算结果。在其他的应用中, CRC技术主要应用于核实数据传输或者数据存储的正确性和完整性。标准EN/IEC 60335-1即提供了一种核实闪存存储器完整性的方法。 CRC计算单元可以在程序运行时计算出软件的标识,之后与在连接时生成的参考标识比较,然后存放在指定的存储器空间。那么首先来看看CRC校验原理。

2.基本原理

CRC检验原理实际上就是在一个p位二进制数据序列之后附加一个r位二进制检验码(序列),从而构成一个总长为n=p+r位的二进制序列;附加在数据序列之后的这个检验码与数据序列的内容之间存在着某种特定的关系。如果因干扰等原因使数据序列中的某一位或某些位发生错误,这种特定关系就会被破坏。因此,通过检查这一关系,就可以实现对数据正确性的检验。

3.几个基本概念

1、帧检验序列FCS(Frame Check Sequence):为了进行差错检验而添加的冗余码。
2、多项式模2运行:实际上是按位异或(Exclusive OR)运算,即相同为0,相异为1,也就是不考虑进位、借位的二进制加减运算。如:10011011 + 11001010 = 01010001。
3、生成多项式(generator polynomial):当进行CRC检验时,发送方与接收方需要事先约定一个除数,即生成多项式,一般记作G(x)。生成多项式的最高位与最低位必须是1。常用的CRC码的生成多项式有:

在这里插入图片描述
每一个生成多项式都可以与一个代码相对应,如CRC8对应代码:100110001。

13.1.1 CRC检验码的计算

设信息字段为K位,校验字段为R位,则码字长度为N(N=K+R)。设双方事先约定了一个R次多项式g(x),则CRC码:

V(x)=A(x)g(x)=xRm(x)+r(x)

其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式。

这里r(x)对应的代码即为冗余码,加在原信息字段后即形成CRC码。

r(x)的计算方法为:在K位信息字段的后面添加R个0,再除以g(x)对应的代码序列,得到的余数即为r(x)对应的代码(应为R-1位;若不足,而在高位补0)。

计算示例:
设需要发送的信息为M = 1010001101,产生多项式对应的代码为P = 110101,R=5。在M后加5个0,然后对P做模2除法运算,得余数r(x)对应的代码:01110。故实际需要发送的数据是101000110101110。

在这里插入图片描述

13.1.2 错误检测

当接收方收到数据后,用收到的数据对P(事先约定的)进行模2除法,若余数为0,则认为数据传输无差错;若余数不为0,则认为数据传输出现了错误,由于不知道错误发生在什么地方,因而不能进行自动纠正,一般的做法是丢弃接收的数据。

【注】几点说明:
1、CRC是一种常用的检错码,并不能用于自动纠错。
2、只要经过严格的挑选,并使用位数足够多的除数 P,那么出现检测不到的差错的概率就很小很小。
3、仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受(只是非常近似的认为是无差错的),并不能保证可靠传输。

13.2 STM32中的CRC

所有的STM32芯片都内置了一个硬件的CRC计算模块,可以很方便地应用到需要进行通信的程序中

● 使用CRC-32(以太网)多项式:0x4C11DB7
─ X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X4 + X2 + X +1
● 一个32位数据寄存器用于输入 / 输出
● CRC计算时间:4个AHB时钟周期(HCLK)
● 通用8位寄存器(可用于存放临时数据),这个CRC计算模块使用常见的、在以太网中使用的计算多项式:

4.CRC功能描述

CRC计算单元含有1个32位数据寄存器:
● 对该寄存器进行写操作时,作为输入寄存器,可以输入要进行CRC计算的新数据。
● 对该寄存器进行读操作时,返回上一次CRC计算的结果。
每一次写入数据寄存器,其计算结果是前一次CRC计算结果和新计算结果的组合(对整个32位字进行CRC计算,而不是逐字节地计算)

使用这个内置CRC模块的方法非常简单,既首先复位CRC模块(设置CRC_CR=0x01),这个操作把CRC计算的余数初始化为0xFFFFFFFF;然后把要计算的数据按每32位分割为一组数据字,并逐个地把这组数据字写入CRC_DR寄存器(既下图中的绿色框),写完所有的数据字后,就可以从CRC_DR寄存器读出计算的结果。

 CRC 计算单元框图
CRC 计算单元框图

5.STM32Cube生成工程

我们在串口的例子的基础上进行配置。
串口通信(HAL库)
在这里插入图片描述
CRC配置很简单,激活CRC模块即可。
在这里插入图片描述

6.看官方说如何使用这个驱动程序

在这里插入图片描述

使用__HAL_RCC_CRC_CLK_ENABLE()启用CRC AHB时钟
(+)初始化CRC计算器
(+)指定生成多项式(外设默认值或非默认值)
(++)指定初始化值(外设默认值或非默认值)
(++)指定输入数据格式
(++)指定输入或输出数据反转模式
(+)使用HAL_CRC_Accumulate() 函数计算输入数据缓冲区的CRC值,以先前计算的CRC作为初始化Value
(+)使用HAL_CRC_Calculate() 函数计算输入数据缓冲区的CRC值,从定义的初始化值(默认或非默认)开始计算CRC

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:*                        opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "crc.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV */#define BUFFER_SIZE    114/* 私有变量 ------------------------------------------------------------------*/
static const uint32_t aDataBuffer[BUFFER_SIZE] ={0x00001021, 0x20423063, 0x408450a5, 0x60c670e7, 0x9129a14a, 0xb16bc18c,0xd1ade1ce, 0xf1ef1231, 0x32732252, 0x52b54294, 0x72f762d6, 0x93398318,0xa35ad3bd, 0xc39cf3ff, 0xe3de2462, 0x34430420, 0x64e674c7, 0x44a45485,0xa56ab54b, 0x85289509, 0xf5cfc5ac, 0xd58d3653, 0x26721611, 0x063076d7,0x569546b4, 0xb75ba77a, 0x97198738, 0xf7dfe7fe, 0xc7bc48c4, 0x58e56886,0x78a70840, 0x18612802, 0xc9ccd9ed, 0xe98ef9af, 0x89489969, 0xa90ab92b,0x4ad47ab7, 0x6a961a71, 0x0a503a33, 0x2a12dbfd, 0xfbbfeb9e, 0x9b798b58,0xbb3bab1a, 0x6ca67c87, 0x5cc52c22, 0x3c030c60, 0x1c41edae, 0xfd8fcdec,0xad2abd0b, 0x8d689d49, 0x7e976eb6, 0x5ed54ef4, 0x2e321e51, 0x0e70ff9f,0xefbedfdd, 0xcffcbf1b, 0x9f598f78, 0x918881a9, 0xb1caa1eb, 0xd10cc12d,0xe16f1080, 0x00a130c2, 0x20e35004, 0x40257046, 0x83b99398, 0xa3fbb3da,0xc33dd31c, 0xe37ff35e, 0x129022f3, 0x32d24235, 0x52146277, 0x7256b5ea,0x95a88589, 0xf56ee54f, 0xd52cc50d, 0x34e224c3, 0x04817466, 0x64475424,0x4405a7db, 0xb7fa8799, 0xe75ff77e, 0xc71dd73c, 0x26d336f2, 0x069116b0,0x76764615, 0x5634d94c, 0xc96df90e, 0xe92f99c8, 0xb98aa9ab, 0x58444865,0x78066827, 0x18c008e1, 0x28a3cb7d, 0xdb5ceb3f, 0xfb1e8bf9, 0x9bd8abbb,0x4a755a54, 0x6a377a16, 0x0af11ad0, 0x2ab33a92, 0xed0fdd6c, 0xcd4dbdaa,0xad8b9de8, 0x8dc97c26, 0x5c644c45, 0x3ca22c83, 0x1ce00cc1, 0xef1fff3e,0xdf7caf9b, 0xbfba8fd9, 0x9ff86e17, 0x7e364e55, 0x2e933eb2, 0x0ed11ef0};__IO uint32_t uwCRCValue = 0;/* Expected CRC Value */
uint32_t uwExpectedCRCValue = 0x379E9F06;/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */#ifdef __GNUC__/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printfset to 'Yes') calls __io_putchar() */#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/*** @brief  Retargets the C library printf function to the USART.* @param  None* @retval None*/
PUTCHAR_PROTOTYPE
{/* Place your implementation of fputc here *//* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);return ch;
}int fgetc(FILE * f)
{uint8_t ch = 0;HAL_UART_Receive(&huart1, (uint8_t *)&ch, 1, 0xffff);return ch;
}/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_CRC_Init();/* USER CODE BEGIN 2 *//* 进行冗余循环校验,获取校验码*/uwCRCValue = HAL_CRC_Accumulate(&hcrc, (uint32_t *)aDataBuffer, BUFFER_SIZE);/* 校验码与正确的校验结果对比 */if (uwCRCValue != uwExpectedCRCValue){/* Wrong CRC value */printf("CRC循环冗余校验结果出错!!!\n");}else{/* Right CRC value */printf("CRC循环冗余校验结果正确!!!\n");printf("32-bit CRC 校验码为:%d\n",uwCRCValue);}/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state *//* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

值得注意的是ST官方提供的CRC校验有两个函数,函数原型如下:

/*** @brief  Compute the 32-bit CRC value of a 32-bit data buffer*         starting with the previously computed CRC as initialization value.* @param  hcrc CRC handle* @param  pBuffer pointer to the input data buffer.* @param  BufferLength input data buffer length (number of uint32_t words).* @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)*/
uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
{uint32_t index;      /* CRC input data buffer index */uint32_t temp = 0U;  /* CRC output (read from hcrc->Instance->DR register) *//* Change CRC peripheral state */hcrc->State = HAL_CRC_STATE_BUSY;/* Enter Data to the CRC calculator */for (index = 0U; index < BufferLength; index++){hcrc->Instance->DR = pBuffer[index];}temp = hcrc->Instance->DR;/* Change CRC peripheral state */hcrc->State = HAL_CRC_STATE_READY;/* Return the CRC computed value */return temp;
}/*** @brief  Compute the 32-bit CRC value of a 32-bit data buffer*         starting with hcrc->Instance->INIT as initialization value.* @param  hcrc CRC handle* @param  pBuffer pointer to the input data buffer.* @param  BufferLength input data buffer length (number of uint32_t words).* @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)*/
uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
{uint32_t index;      /* CRC input data buffer index */uint32_t temp = 0U;  /* CRC output (read from hcrc->Instance->DR register) *//* Change CRC peripheral state */hcrc->State = HAL_CRC_STATE_BUSY;/* Reset CRC Calculation Unit (hcrc->Instance->INIT is*  written in hcrc->Instance->DR) */__HAL_CRC_DR_RESET(hcrc);/* Enter 32-bit input data to the CRC calculator */for (index = 0U; index < BufferLength; index++){hcrc->Instance->DR = pBuffer[index];}temp = hcrc->Instance->DR;/* Change CRC peripheral state */hcrc->State = HAL_CRC_STATE_READY;/* Return the CRC computed value */return temp;
}

咋一看好像很没啥区别,其实还是有区别的,HAL_CRC_Calculate()函数在每次计算时,对DR寄存器进行了复位,而HAL_CRC_Accumulate()函数没有,因此在使用时就要根据需求来选择相应的函数了。

7.实验现象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95404.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android学习之路(17) Android Adapter详解

Adapter基础讲解 本节引言 从本节开始我们要讲的UI控件都是跟Adapter(适配器)打交道的&#xff0c;了解并学会使用这个Adapter很重要&#xff0c; Adapter是用来帮助填充数据的中间桥梁&#xff0c;简单点说就是&#xff1a;将各种数据以合适的形式显示到view上,提供 给用户看…

腾讯内部最通俗易懂的项目管理PPT

大家好&#xff0c;我是老原。 这两年&#xff0c;大厂裁员的风是一点不减&#xff0c;也有不少人吐槽大厂又卷又累&#xff0c;但仍然有很多人都想进大厂。 有不少项目经理&#xff0c;几年下来混迹各类大厂&#xff0c;履历刷得是杠杠的。 光鲜的履历、过硬的薪资、优质的…

【软件测试】自动化测试selenium(二)

文章目录 三. 掌握Selenium常用的API使用1. webdriver API2. 操作测试对象3. 添加等待4. 打印信息5. 浏览器的操作6. 键盘事件7. 鼠标事件8. 定位一组元素9. 多层框架/窗口定位10. 下拉框处理11. 弹窗处理12. 上传文件13. 关闭浏览器14. 切换窗口15. 截图操作 三. 掌握Selenium…

C++11——神奇的右值引用与移动构造

文章目录 前言左值引用和右值引用右值引用的使用场景和意义右值引用引用左值万能引用右值引用的属性完美转发新的默认构造函数强制和禁止生成默认函数 总结 前言 本篇博客将主要讲述c11中新添的新特性——右值引用和移动构造等&#xff0c;从浅到深的了解这个新特性的用法&…

数值分析学习笔记——绪论【华科B站教程版本】

绪论 数值分析概念 用计算机求解数学问题的数值方法和理论 三大科学研究方法 实验理论分析科学计算&#xff08;用计算机去辅助研究&#xff09;&#xff1a;数值方法计算机 解析解和近似解 解析解&#xff1a;使用数学方法求出或推导出的结果&#xff0c;往往可以求解出…

博途1200/1500 ALT指令

SMART PLC的ALT指令实现代码,请查看下面文章博客 SMART PLC如何构造ALT指令_smart200类似alt指令-CSDN博客单按钮启停这些老生常谈的问题,很多人感兴趣。这篇博文讨论下不同的实现方法,希望对大家有所帮助。指令虽然简单,但是在编程的时候合理使用对我们高效率编程帮助还是…

【算法学习】-【双指针】-【盛水最多的容器】

LeetCode原题链接&#xff1a;盛水最多的容器 下面是题目描述&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。…

矢量图形编辑软件illustrator 2023 mac特点介绍

illustrator 2023 mac是一款矢量图形编辑软件&#xff0c;用于创建和编辑排版、图标、标志、插图和其他类型的矢量图形。 illustrator mac软件特点 矢量图形&#xff1a;illustrator创建的图形是矢量图形&#xff0c;可以无限放大而不失真&#xff0c;这与像素图形编辑软件&am…

react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容

1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享&#xff0c;和SMS短信方式分享链接内容&#xff0c;该怎么做呢&#xff1f;图示如下: 分享到国外各大社交平台&am…

如何禁用Windows 10快速启动(以及为什么要这样做)

如果您不想启用Windows 10快速启动&#xff0c;则可以相对轻松地禁用它。 快速启动是一项功能&#xff0c;首先在 Windows 8 中作为快速启动实现&#xff0c;并延续到 Windows 10&#xff0c;让您的 PC 更快地启动&#xff0c;因此得名。虽然这个方便的功能可以通过将操作系统…

Linux——指令初识

Linux下基本指令 前言一、 ls 指令二、 pwd命令三、cd 指令四、 touch指令五、mkdir指令六、rmdir指令 && rm 指令七、man指令八、cp指令九、mv指令十、cat指令十一、.more指令十二、less指令十三、head指令十四、tail指令总结 前言 linux的学习开始啦&#xff01; 今…

手机或者电脑连接局域网内的虚拟机(网桥)

手机或者电脑连接局域网内的虚拟机&#xff08;网桥&#xff09; 手机软件&#xff1a;ConnectBot&#xff0c;Termius&#xff0c;JuiceSSH … 1.虚拟机vmware中添加桥接网卡 这里桥接网卡选择的是自动&#xff0c;是自动生成动态IP&#xff0c;如果不需要动态生成&#xff…

systemverilog function的一点小case

关于function的应用无论是在systemverilog还是verilog中都有很广泛的应用&#xff0c;但是一直有一个模糊的概念困扰着我&#xff0c;今天刚好有时间来搞清楚并记录下来。 关于fucntion的返回值的问题&#xff1a; function integer clog2( input logic[255:0] value);for(cl…

使用Jest测试Cesium源码

使用Jest测试Cesium源码 介绍环境Cesium安装Jest安装Jest模块包安装babel安装Jest的VSC插件 测试例子小结 介绍 在使用Cesium时&#xff0c;我们常常需要编写自己的业务代码&#xff0c;其中需要引用Cesium的源码&#xff0c;这样方便调试。此外&#xff0c;目前代码中直接使用…

ubuntu中的系统消息中显卡显示llvmpipe (LLVM 10.0.0, 256 bits)

这是我在使用ubuntu系统时出现的问题&#xff0c;网上搜到很多解决的办法&#xff0c;我是一顿操作&#xff0c;后来看到这位老哥的帖子解决了。 集Linux / Ubuntuwin10双系统安装记录(2):AMD核显驱动引发的问题 - 知乎上一篇中我们提到了 astroR2&#xff1a;Linux / Ubuntuw…

DataFrame入门

文章目录 1. 数据集合加载2. 使用常用的属性/方法查看数据情况type()shapecolumnsdtypesinfo() 3. 查看部分数据获取一列数据获取多列数据按行加载数据同时取出行列数据切片语法 4. 简单数据分析5. 数据可视化总结 1. 数据集合加载 pd.read_csv()方法不仅可以加载CSV文件&…

初识Java 12-3 流

目录 终结操作 将流转换为一个数组&#xff08;toArray&#xff09; 在每个流元素上应用某个终结操作&#xff08;forEach&#xff09; 收集操作&#xff08;collect&#xff09; 组合所有的流元素&#xff08;reduce&#xff09; 匹配&#xff08;*Match&#xff09; 选…

LLM下半场之Agent基础能力概述:Profile、Memory、Plan、Action、Eval学习笔记

一.Agent发展将会是LLM的下半场 目前大家都在讨论LLM&#xff0c;LLM解决的问题是帮助机器像人类一样理解彼此的意图&#xff0c;本质上来讲&#xff0c;LLM更像是一个技术或者工具。但是人类社会发生变革的引线&#xff0c;往往是一个产品或者解决方案&#xff0c;比如电池技…

Linux【网络】数据链路层

Linux【网络】数据链路层 数据链路层以太网帧格式对比理解MAC地址和IP地址ARP协议--地址解析协议ARP工作流程ARP请求ARP应答 其他协议DNS-域名解析协议ICMP--网络层协议NAT技术NAPT 正向代理与反向代理 数据链路层 数据链路层用于两个设备&#xff0c;同一数据链路节点之间的信…

栈和队列的实现

用栈实现队列 1.分析2.代码 1.分析 2.代码 class MyQueue {private Stack<Integer> s1;private Stack<Integer> s2;public MyQueue() {s1 new Stack<>();s2 new Stack<>();}public void push(int x) {s1.push(x);}public int pop() {if(empty()){re…