【LittleXi】【MIT6.S081-2020Fall】Lab: locks

【MIT6.S081-2020Fall】Lab: locks

  • 【MIT6.S081-2020Fall】Lab: locks
  • 内存分配实验
    • 内存分配实验准备
    • 实验目的
    • 1. 举一个例子说明修改前的**kernel/kalloc.c**中如果没有锁会导致哪些进程间竞争(races)问题
    • 2. 说明修改前的kernel/kalloc.c中锁竞争contention问题及其后果
    • 3. 解释acquire和release中push_off/pop_off的作用
    • 4. 对上页实验内容的实现思路、代码设计、测试结果
      • 实验思路
      • 代码设计
      • 测试结果
    • 同步互斥实验目标
      • Q1:关系分析,请写出题目中存在的互斥和同步的关系
      • Q2:上述关系可以抽象为几个进程? 写出伪代码描述和实现思路
        • 伪代码展示

【MIT6.S081-2020Fall】Lab: locks

内存分配实验

内存分配实验准备

环境配置

  • commit lab0的代码

git commit -am lab0

  • 切换到lock分支

git fetch

git checkout lock

make clean

  • make; make qemu并执行kalloctest观察锁竞争情况

实验目的

1. 为每个CPU维护一个空闲页面链表,每个链表都有自己的锁**

​ → 不同CPU上的分配和释放可以并行执行

2. 当某个CPU的空闲页面用尽时,需要借用另一CPU的空闲页面**

​ → 虽然“借用”时可能引入锁竞争,但这种情况较少发生

​ 完成实验后,需通过kalloctest的3个测试 (测试时间可能较长)

1. 举一个例子说明修改前的kernel/kalloc.c中如果没有锁会导致哪些进程间竞争(races)问题

答:

  1. Double Free问题:如果没有锁来保护释放内存的操作,多个进程可能会同时尝试释放同一块内存。这可能导致内存被释放多次,破坏内存管理的一致性。当后续的内存分配请求发生时,可能会分配到之前已经被释放但未及时回收的内存块,从而导致不可预测的错误和安全问题。
  2. 内存泄漏问题:如果没有锁来保护内存分配的操作,多个进程可能会同时尝试分配内存。这可能导致内存分配失败,因为内存池可能在分配之前已经被其他进程用尽。此时,一些进程可能无法获得所需的内存,导致内存泄漏。
  3. 数据不一致性问题:如果多个进程同时修改内存池的数据结构,没有适当的锁来同步这些操作,就可能导致数据结构的损坏,从而破坏了内存管理的一致性。
  4. 性能问题:没有适当的锁来管理内存池,可能导致竞争条件,降低了系统的性能。竞争条件会导致进程等待或频繁地重试内存分配/释放操作,从而增加了系统的负载和延迟。

2. 说明修改前的kernel/kalloc.c中锁竞争contention问题及其后果

答:

1、修改前的kalloc.c代码中,只有一个内核内存分配器(kmem),这会导致在很多线程想要获取锁,想要CPU 调度分配内存的时候造成拥塞情况,导致大量的线程获取锁失败,使得程序运行效率降低。

3. 解释acquire和release中push_off/pop_off的作用

答:“acquire” 和 “release” 中的 “push_off” 和 “pop_off” 是通常用于实现中断禁用(中断屏蔽)的操作。这些操作通常在多任务操作系统中用于确保获取锁或释放锁的相关代码的原子性执行,以防止并发执行的任务相互干扰。

4. 对上页实验内容的实现思路、代码设计、测试结果

实验思路

1、为每个CPU维护一个空闲页面链表,我们可以通过修改kalloc.c代码中的kmem结构体,修改为长度为NCPU的结构体数组,再init函数中,初始化8个结构体中的锁,进行free操作的时候,注意获取当前CPU的id,然后对对应id的CPU进行释放

实现的核心代码:

struct
{struct spinlock lock;struct run *freelist;
} kmem[NCPU];

2、当其它CPU空闲的时候,我们怎样借用其它CPU来完成任务呢?我们可以进行一个简单的for循环遍历,当发现这个CPU是空闲的,那么我们就可以借用这个CPU

实现的核心代码

  if (!r){for (int j = 0; j < NCPU; j++){if (i != j){// 尝试获取锁acquire(&kmem[j].lock);if (kmem[j].freelist){// 如果获取到了,那么就分配,并退出r = kmem[j].freelist;kmem[j].freelist = r->next;release(&kmem[j].lock);break;}release(&kmem[j].lock);}}}

代码设计

// Physical memory allocator, for user processes,
// kernel stacks, page-table pages,
// and pipe buffers. Allocates whole 4096-byte pages.#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "spinlock.h"
#include "riscv.h"
#include "defs.h"void freerange(void *pa_start, void *pa_end);extern char end[]; // first address after kernel.// defined by kernel.ld.struct run
{struct run *next;
};struct
{struct spinlock lock;struct run *freelist;
} kmem[NCPU];void kinit()
{for (int i = 0; i < 8; i++)initlock(&kmem[i].lock, "kmem");freerange(end, (void *)PHYSTOP);
}void freerange(void *pa_start, void *pa_end)
{char *p;p = (char *)PGROUNDUP((uint64)pa_start);for (; p + PGSIZE <= (char *)pa_end; p += PGSIZE)kfree(p);
}// Free the page of physical memory pointed at by pa,
// which normally should have been returned by a
// call to kalloc().  (The exception is when
// initializing the allocator; see kinit above.)
void kfree(void *pa)
{struct run *r;if (((uint64)pa % PGSIZE) != 0 || (char *)pa < end || (uint64)pa >= PHYSTOP)panic("kfree");// Fill with junk to catch dangling refs.memset(pa, 1, PGSIZE);r = (struct run *)pa;int i = r_tp();push_off();acquire(&kmem[i].lock);r->next = kmem[i].freelist;kmem[i].freelist = r;release(&kmem[i].lock);pop_off();
}// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated.
void *
kalloc(void)
{struct run *r;push_off();int i = r_tp();acquire(&kmem[i].lock);r = kmem[i].freelist;if (r)kmem[i].freelist = r->next;release(&kmem[i].lock);if (!r){for (int j = 0; j < NCPU; j++){if (i != j){// 尝试获取锁acquire(&kmem[j].lock);if (kmem[j].freelist){// 如果获取到了,那么就分配,并退出r = kmem[j].freelist;kmem[j].freelist = r->next;release(&kmem[j].lock);break;}release(&kmem[j].lock);}}}pop_off();if (r)memset((char *)r, 5, PGSIZE); // fill with junkreturn (void *)r;
}

测试结果

请添加图片描述

同步互斥实验目标

Q1:关系分析,请写出题目中存在的互斥和同步的关系

答:同步关系包含互斥关系

1、店面的窗口属于临界区资源,且煎饼果子占用了该窗口后,即将该临界区资源上锁,鸡蛋灌饼不能再占用该临界区资源,反之亦然,此过程既体现了同步关系又体现了互斥关系

2、同学们排队购买早餐,并且根据自己的需求站成了两队,体现出来同步关系,不至于让整个队伍乱掉,有序地进行,去获取窗口上的资源,符合FIFO思想、同学们位于同步阻塞态,但是当8点后,没买到的同学到其它窗口去了,又体现出来非阻塞态

Q2:上述关系可以抽象为几个进程? 写出伪代码描述和实现思路

答:上述几个关系可以抽象为4个进程

实现思路:

1、可以先定义四个wait函数,分别表示煎饼果子等待篮子为空,鸡蛋灌饼等待篮子为空,第一支队伍等待鸡蛋灌饼被添上,第二支队伍等待煎饼果子被添上,然后在主函数中fork四个线程,宏观并行跑这四个函数,知道到达早上8点收摊位置

2、因为题目说每天都会出现从一开始就排队直到 8 点结束,所以我们可以默认;两边排队的人数都足够多,当然实际中我们还可以为队伍人物增加设置一个人数信号量

伪代码展示

请添加图片描述
请添加图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95239.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch安装访问

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…

【云笔记篇】Microsoft OneNote笔记插件推荐OneMore

【云笔记篇】Microsoft OneNote笔记插件推荐OneMore OneMore插件是一款非常强大&#xff0c;多达一百多个扩展功能的OneNote笔记插件&#xff0c;而且免费开源&#xff0c;不断更新的优秀插件—【蘇小沐】 1、实验 【OneMore官网&#xff1a;OneMore - a OneNote add-in (on…

C++——类和对象

文章目录 1.面向过程和面向对象的区别2.类的定义3.类的特点3.1封装性3.2继承性3.3多态性 4.类的访问限定符及封装4.1访问限定符4.2封装 5.类的作用域6.类的实例化7.计算类对象大小8.this指针8.1this指针的引出8.2this指针的特性 9.类的6个默认成员函数9.1默认构造函数9.1.1概念…

Elastic SQL 输入:数据库指标可观测性的通用解决方案

作者&#xff1a;Lalit Satapathy, Ishleen Kaur, Muthukumar Paramasivam Elastic SQL 输入&#xff08;metricbeat 模块和输入包&#xff09;允许用户以灵活的方式对许多支持的数据库执行 SQL 查询&#xff0c;并将结果指标提取到 Elasticsearch。 本博客深入探讨了通用 SQL …

单调队列---数据结构与算法

简介 队列也是一种受限制的线性表和栈相类似&#xff0c;栈是先进后出&#xff0c;而队列是先进先出&#xff0c;就好像一没有底的桶&#xff0c;往里面放东西&#xff0c;如图 在这里也是用数组来实现队列&#xff0c;用数组实现的叫做顺序队列 队列的数组模拟 const int N…

学习笔记|ADC反推电源电压|扫描按键(长按循环触发)|课设级实战练习|STC32G单片机视频开发教程(冲哥)|第十八集:ADC实战

文章目录 1.ADC反推电源电压测出Vref引脚电压的意义?手册示例代码分析复写手册代码Tips&#xff1a;乘除法与移位关系为什么4096后面还有L 2.ADC扫描按键(长按循环触发)长按触发的实现 3.实战小练1.初始状态显示 00 - 00 - 00&#xff0c;分别作为时&#xff0c;分&#xff0c…

buuctf-[GXYCTF2019]禁止套娃 git泄露,无参数rce

用dirsearch扫一下&#xff0c;看到flag.php 访问一下没啥东西&#xff0c;使用githack python2 GitHack.py http://8996e81f-a75c-4180-b0ad-226d97ba61b2.node4.buuoj.cn/.git/查看index.php <?php include "flag.php"; echo "flag在哪里呢&#xff1f;…

Net相关的各类开源项目

Net相关的各类开源项目 WPFHandyControlLive-ChartsWPFDeveloperswpf-uidesignStylet WebScheduleMasterYiShaAdminBlog.CoreNebula.AdminNewLife.CubeOpenAuth UnityuGUIUnityCsReferenceEpitomeMyUnityFrameWorkKSFrameworkTowerDefense-GameFramework-Demo 通用ClientServer…

数据库安全与保护

数据库安全与保护 文章目录 第一节 数据库完整性一、完整性约束条件的作用对象1.列级约束2.元组约束3.表级约束 二、定义与实现完整性约束1、实体完整性2、参照完整性3、自定义完整性非空约束 三、命名完整性约束四、更新完整性约束1、删除约束2、添加约束 第二节 触发器一、创…

NUWA论文阅读

论文链接&#xff1a;NUWA: Visual Synthesis Pre-training for Neural visUal World creAtion 文章目录 摘要引言相关工作视觉自回归模型视觉稀疏自注意 方法3D数据表征3D Nearby Self-Attention3D编码器-解码器训练目标 实验实现细节与SOTA比较T2I微调T2V微调V2V微调Sketch-t…

获取沪深300的所有个股列表

脚本&#xff1a; import requests from bs4 import BeautifulSoupurl "https://q.stock.sohu.com/cn/bk_4444.shtml" response requests.get(url) soup BeautifulSoup(response.text, "html.parser")# 找到包含class为e1的元素 elements soup.find_a…

Leetcode 231.2的幂

给你一个整数 n&#xff0c;请你判断该整数是否是 2 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 如果存在一个整数 x 使得 n 2x &#xff0c;则认为 n 是 2 的幂次方。 示例 1&#xff1a; 输入&#xff1a;n 1 输出&#xff1a;tr…

文件操作 和 IO - 详解

一&#xff0c;认识文件 1.1 树形结构组织和目录 文件是对于"硬盘"数据的一种抽象&#xff0c;在一台计算机上&#xff0c;有非常多的文件&#xff0c;这些文件是通过 "文件系统" 来进行组织的&#xff0c;本质上就是通过 "目录"(文件夹) 这样…

Maven(项目构建管理工具)

为什么要使用Maven&#xff1f; 传统项目管理状态分析&#xff1a; ①jar包不统一&#xff0c;jar包不兼容&#xff1b; ②工程升级维护过程操作繁琐&#xff1b; ........... Maven(JAVA书写)&#xff1a;管理jar包以及jar之间的依赖关系&#xff0c;完成项目编译&#xff0c;…

【Java 进阶篇】JDBC数据库连接池Druid详解

在Java应用程序中&#xff0c;与数据库进行交互是一个常见的任务。为了更有效地管理数据库连接并提高性能&#xff0c;数据库连接池是一种常见的解决方案。Druid是一个流行的JDBC数据库连接池&#xff0c;它具有丰富的功能和高性能。本博客将详细介绍Druid连接池&#xff0c;包…

6.Tensors For Beginners-What are Convector

Covectors &#xff08;协向量&#xff09; What‘s a covector Covectors are “basically” Row Vectors 在一定程度上&#xff0c;可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置&#xff01; 行向量 和 列向量 是根本不同类型的对象。 …

【iptables 实战】9 docker网络原理分析

在开始本章阅读之前&#xff0c;需要提前了解以下的知识 阅读本节需要一些docker的基础知识&#xff0c;最好是在linux上安装好docker环境。提前掌握iptables的基础知识&#xff0c;前文参考【iptables 实战】 一、docker网络模型 docker网络模型如下图所示 说明&#xff1…

僵尸进程的产生与处理

僵尸进程是指在进程结束后&#xff0c;其父进程没有及时处理该进程的终止状态信息&#xff0c;导致该进程的进程描述符仍然存在于系统进程表中&#xff0c;但是已经没有实际的执行代码。这样的进程被称为僵尸进程。 僵尸进程的产生是由于父进程没有及时调用wait()或waitpid()等…

RabbitMQ-死信队列

接上文 RabbitMQ-java使用消息队列 1 死信队列简介 死信队列模式实际上本质是一个死信交换机绑定的死信队列&#xff0c;当正常队列的消息被判定为死信时&#xff0c;会被发送到对应的死信交换机&#xff0c;然后再通过交换机发送到死信队列中&#xff0c;死信队列也有对应的消…