如何高效实现文件传输:小文件采用零拷贝、大文件采用异步io+直接io

一般会如何实现文件传输?

服务器提供文件传输功能,需要将磁盘上的文件读取出来,通过网络协议发送到客户端。如果需要你自己编码实现这个文件传输功能,你会怎么实现呢?

通常,你会选择最直接的方法:从网络请求中找出文件在磁盘中的路径后,如果这个文件比较大,假设有 320MB,可以在内存中分配 32KB 的缓冲区,再把文件分成一万份,每份只有 32KB,这样,从文件的起始位置读入 32KB 到缓冲区,再通过网络 API 把这 32KB 发送到客户端。接着重复一万次,直到把完整的文件都发送完毕。如下图所示:

​不过这个方案性能并不好,主要有两个原因。

上下文切换:

首先,它至少经历了 4 万次用户态与内核态的上下文切换。因为每处理 32KB 的消息,就需要一次 read 调用和一次 write 调用,每次系统调用都得先从用户态切换到内核态,等内核完成任务后,再从内核态切换回用户态。可见,每处理 32KB,就有 4 次上下文切换,重复 1 万次后就有 4 万次切换。

上下文切换的成本并不小,虽然一次切换仅消耗几十纳秒到几微秒,但高并发服务会放大这类时间的消耗。

内存拷贝:

其次,这个方案做了 4 万次内存拷贝,对 320MB 文件拷贝的字节数也翻了 4 倍,到了 1280MB。很显然,过多的内存拷贝无谓地消耗了 CPU 资源,降低了系统的并发处理能力。

所以要想提升传输文件的性能,需要从降低上下文切换的频率和内存拷贝次数两个方向入手。

零拷贝如何提升文件传输性能?

首先,我们来看如何降低上下文切换的频率。

为什么读取磁盘文件时,一定要做上下文切换呢?这是因为,读取磁盘或者操作网卡都由操作系统内核完成。内核负责管理系统上的所有进程,它的权限最高,工作环境与用户进程完全不同。只要我们的代码执行 read 或者 write 这样的系统调用,一定会发生 2 次上下文切换:首先从用户态切换到内核态,当内核执行完任务后,再切换回用户态交由进程代码执行。

因此,如果想减少上下文切换次数,就一定要减少系统调用的次数。解决方案就是把 read、write 两次系统调用合并成一次,在内核中完成磁盘与网卡的数据交换。

其次,我们应该考虑如何减少内存拷贝次数。

每周期中的 4 次内存拷贝,其中与物理设备相关的 2 次拷贝是必不可少的,包括:把磁盘内容拷贝到内存,以及把内存拷贝到网卡。但另外 2 次与用户缓冲区相关的拷贝动作都不是必需的,因为在把磁盘文件发到网络的场景中,用户缓冲区没有必须存在的理由。

如果内核在读取文件后,直接把 PageCache 中的内容拷贝到 Socket 缓冲区,待到网卡发送完毕后,再通知进程,这样就只有 2 次上下文切换,和 3 次内存拷贝。

​如果网卡支持 SG-DMA(The Scatter-Gather Direct Memory Access)技术,还可以再去除 Socket 缓冲区的拷贝,这样一共只有 2 次内存拷贝。

​实际上,这就是零拷贝技术。

相关视频推荐

手写用户态协议栈以及零拷贝的实现

服务器性能优化,异步处理有哪些不一样的

用户态网络缓冲区设计-ringbuffer、chainbuffer

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

​它是操作系统提供的新函数,同时接收文件描述符和 TCP socket 作为输入参数,这样执行时就可以不需要用户层缓存,完全在内核态完成内存拷贝,既减少了内存拷贝次数,也降低了上下文切换次数。

而且,零拷贝取消了用户缓冲区后,不只降低了用户内存的消耗,还通过最大化利用 socket 缓冲区中的内存,间接地再一次减少了系统调用的次数,从而带来了大幅减少上下文切换次数的机会!

你可以回忆下,没用零拷贝时,为了传输 320MB 的文件,在用户缓冲区分配了 32KB 的内存,把文件分成 1 万份传送,然而,这 32KB 是怎么来的?为什么不是 32MB 或者 32 字节呢?这是因为,在没有零拷贝的情况下,我们希望内存的利用率最高。如果用户缓冲区过大,它就无法一次性把消息全拷贝给 socket 缓冲区;如果用户缓冲区过小,则会导致过多的 read/write 系统调用。

那用户缓冲区为什么不与 socket 缓冲区大小一致呢?这是因为,socket 缓冲区的可用空间是动态变化的,它既用于 TCP 滑动窗口,也用于应用缓冲区,还受到整个系统内存的影响。尤其在长肥网络中,它的变化范围特别大。

零拷贝使我们不必关心 socket 缓冲区的大小。比如,调用零拷贝发送方法时,尽可以把发送字节数设为文件的所有未发送字节数,例如 320MB,也许此时 socket 缓冲区大小为 1.4MB,那么一次性就会发送 1.4MB 到客户端,而不是只有 32KB。这意味着对于 1.4MB 的 1 次零拷贝,仅带来 2 次上下文切换,而不使用零拷贝且用户缓冲区为 32KB 时,经历了 176 次(4 * 1.4MB/32KB)上下文切换。

综合上述各种优点,零拷贝可以把性能提升至少一倍以上!对文章开头提到的 320MB 文件的传输,当 socket 缓冲区在 1.4MB 左右时,只需要 4 百多次上下文切换,以及 4 百多次内存拷贝,拷贝的数据量也仅有 640MB,这样,不只请求时延会降低,处理每个请求消耗的 CPU 资源也会更少,从而支持更多的并发请求。

此外,零拷贝还使用了 PageCache 技术,通过它,零拷贝可以进一步提升性能,我们接下来看看 PageCache 是如何做到这一点的。

PageCache,磁盘高速缓存

回顾上文中的几张图,你会发现,读取文件时,是先把磁盘文件拷贝到 PageCache 上,再拷贝到进程中。为什么这样做呢?有两个原因所致。

第一,由于磁盘比内存的速度慢许多,所以我们应该想办法把读写磁盘替换成读写内存,比如把磁盘中的数据复制到内存中,就可以用读内存替换读磁盘。但是,内存空间远比磁盘要小,内存中注定只能复制一小部分磁盘中的数据。

选择哪些数据复制到内存呢?通常,刚被访问的数据在短时间内再次被访问的概率很高(这也叫“时间局部性”原理),用 PageCache 缓存最近访问的数据,当空间不足时淘汰最久未被访问的缓存(即 LRU 算法)。读磁盘时优先到 PageCache 中找一找,如果数据存在便直接返回,这便大大提升了读磁盘的性能。

第二,读取磁盘数据时,需要先找到数据所在的位置,对于机械磁盘来说,就是旋转磁头到数据所在的扇区,再开始顺序读取数据。其中,旋转磁头耗时很长,为了降低它的影响,PageCache 使用了预读功能。

也就是说,虽然 read 方法只读取了 0-32KB 的字节,但内核会把其后的 32-64KB 也读取到 PageCache,这后 32KB 读取的成本很低。如果在 32-64KB 淘汰出 PageCache 前,进程读取到它了,收益就非常大。这一讲的传输文件场景中这是必然发生的。

从这两点可以看到 PageCache 的优点,它在 90% 以上场景下都会提升磁盘性能,但在某些情况下,PageCache 会不起作用,甚至由于多做了一次内存拷贝,造成性能的降低。在这些场景中,使用了 PageCache 的零拷贝也会损失性能。

具体是什么场景呢?就是在传输大文件的时候。比如,你有很多 GB 级的文件需要传输,每当用户访问这些大文件时,内核就会把它们载入到 PageCache 中,这些大文件很快会把有限的 PageCache 占满。

然而,由于文件太大,文件中某一部分内容被再次访问到的概率其实非常低。这带来了 2 个问题:首先,由于 PageCache 长期被大文件占据,热点小文件就无法充分使用 PageCache,它们读起来变慢了;其次,PageCache 中的大文件没有享受到缓存的好处,但却耗费 CPU 多拷贝到 PageCache 一次。

所以,高并发场景下,为了防止 PageCache 被大文件占满后不再对小文件产生作用,大文件不应使用 PageCache,进而也不应使用零拷贝技术处理。

异步 IO + 直接 IO

高并发场景处理大文件时,应当使用异步 IO 和直接 IO 来替换零拷贝技术。

仍然回到本讲开头的例子,当调用 read 方法读取文件时,实际上 read 方法会在磁盘寻址过程中阻塞等待,导致进程无法并发地处理其他任务,如下图所示:

​异步 IO(异步 IO 既可以处理网络 IO,也可以处理磁盘 IO,这里我们只关注磁盘 IO)可以解决阻塞问题。它把读操作分为两部分,前半部分向内核发起读请求,但不等待数据就位就立刻返回,此时进程可以并发地处理其他任务。当内核将磁盘中的数据拷贝到进程缓冲区后,进程将接收到内核的通知,再去处理数据,这是异步 IO 的后半部分。如下图所示:

​从图中可以看到,异步 IO 并没有拷贝到 PageCache 中,这其实是异步 IO 实现上的缺陷。经过 PageCache 的 IO 我们称为缓存 IO,它与虚拟内存系统耦合太紧,导致异步 IO 从诞生起到现在都不支持缓存 IO。

绕过 PageCache 的 IO 是个新物种,我们把它称为直接 IO。对于磁盘,异步 IO 只支持直接 IO。

直接 IO 的应用场景并不多,主要有两种:第一,应用程序已经实现了磁盘文件的缓存,不需要 PageCache 再次缓存,引发额外的性能消耗。比如 MySQL 等数据库就使用直接 IO;第二,高并发下传输大文件,我们上文提到过,大文件难以命中 PageCache 缓存,又带来额外的内存拷贝,同时还挤占了小文件使用 PageCache 时需要的内存,因此,这时应该使用直接 IO。

当然,直接 IO 也有一定的缺点。除了缓存外,内核(IO 调度算法)会试图缓存尽量多的连续 IO 在 PageCache 中,最后合并成一个更大的 IO 再发给磁盘,这样可以减少磁盘的寻址操作;另外,内核也会预读后续的 IO 放在 PageCache 中,减少磁盘操作。直接 IO 绕过了 PageCache,所以无法享受这些性能提升。

有了直接 IO 后,异步 IO 就可以无阻塞地读取文件了。现在,大文件由异步 IO 和直接 IO 处理,小文件则交由零拷贝处理,至于判断文件大小的阈值可以灵活配置(参见 Nginx 的 directio 指令)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9455.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

交叉编译----宿主机x86 ubuntu 64位-目标机ARMv8 aarch64

1.交叉编译是什么,为什么要交叉编译 编译:在一个平台上生成在该平台上的可执行代码交叉编译:在一个平台上生成在另一个平台上的可执行代码交叉编译的例子:如51单片机的可执行代码(hex文件)是在集成环境kei…

AT15透明屏有哪些特点?

AT15透明屏是一种新型的显示技术,它采用了透明材料制成的屏幕,可以实现透明显示效果。这种屏幕可以广泛应用于各种领域,如商业广告、展览展示、智能家居等。 AT15透明屏的特点之一是其高透明度。 由于采用了透明材料制成,AT15透明…

深度对话|Sui资产所有权如何让游戏体验更好

近日,我们采访了Mysten Labs的游戏产品总监Bill Allred,共同探讨了为什么Sui非常适合游戏。他分享了对Sui关键创新的看法,以及它为游戏开发者带来的价值,Sui的关键创新帮助开发者将他们所想象的游戏变为现实。 你能谈谈某些游戏的…

【微服务系统设计】系统设计基础:速率限制器

什么是速率限制器? 速率限制是指防止操作的频率超过定义的限制。在大型系统中,速率限制通常用于保护底层服务和资源。速率限制一般在分布式系统中作为一种防御机制,使共享资源能够保持可用性。 速率限制通过限制在给定时间段内可以到达您的 A…

AI面试官:Asp.Net 中使用Log4Net (三)

AI面试官:Asp.Net 中使用Log4Net (三) 当面试涉及到使用log4net日志记录框架的相关问题时,通常会聚焦在如何在.NET或.NET Core应用程序中集成和使用log4net。以下是一些关于log4net的面试题目,以及相应的解答、案例和代码: 文章目…

uniapp 瀑布流 (APP+H5+微信小程序)

WaterfallsFlow.vue <template><view class"wf-page" :class"props?.paddingC ? paddingC : "><!-- left --><view><view id"left" ref"left" v-if"leftList.length"><viewv-for…

vue解决跨域访问问题(个人学习笔记六)

目录 友情提醒第一章、跨越问题解决1.1&#xff09;什么是跨域问题&#xff1f;1.2&#xff09;第一种解决方式&#xff1a;后端设置允许跨域访问1.3&#xff09;第二种解决方式&#xff1a;前端配置代理 第二章、配置代理服务器2.1&#xff09;配置简单代理服务器2.2&#xff…

es6 new Set 数组去重 并集 交集 差集

Set 对象存储的值总是唯一的 Set 对象方法 方法 描述 add 添加某个值&#xff0c;返回Set对象本身。 clear 删除所有的键/值对&#xff0c;没有返回值。 delete 删除某个键&#xff0c;返回true。如果删除失败&#xff0c;返回false。 forEach 对每个元素执行指定操作。 has 返…

端口复用与重映射

端口复用和重映射 STM32F1有很多的内置外设&#xff0c;这些外设的外部引脚都是与GPIO复用的。也就是说&#xff0c;一个GPIO如果可以复用为内置外设的功能引脚&#xff0c;那么当这个GPIO作为内置外设使用的时候&#xff0c;就叫做复用。 大家都知道&#xff0c;MCU都有串口…

kotlin 编写一个简单的天气预报app(一)

使用Android Studio开发天气预报APP 今天我来分享一下如何使用Android Studio开发一个天气预报APP。在文中&#xff0c;我们将使用第三方接口获取实时天气数据&#xff0c;并显示在APP界面上。 步骤一&#xff1a;创建新项目 首先&#xff0c;打开Android Studio并创建一个新…

MySQL 中一条 SQL 的查询与更新

MySQL 中一条 SQL 的查询与更新 1 SQL 的查询1.1 MySQL 的逻辑架构图1.2 连接器1.3 查询缓存1.4 分析器1.5 优化器1.6 执行器 2 SQL 的更新2.1 redo log&#xff08;重做日志&#xff09;2.2 binlog&#xff08;归档日志&#xff09;2.3 redo log 和 binlog 日志的差异2.4 示例…

Yarn上Streaming流自动调节资源设计

Streaming流自动调节资源 自动资源调节简单来说就是根据数据的输入速率和数据的消费速率来判断是否应该调节资源。如果输入速率大于消费速率&#xff0c;并且在输入速率还在攀升&#xff0c;则将该Job停止并调高Job的资源等级然后重启。如果消费速率大于输入速率&#xff0c;并…

React的核心概念—组件

参考文章 组件的定义和使用 组件是 React 的核心概念之一。它们是构建用户界面&#xff08;UI&#xff09;的基础。 组件&#xff1a;UI 构成要素 在 Web 当中&#xff0c;HTML 允许使用其内置的标签集&#xff08;如 <h1> 和 <li>&#xff09;创建丰富的结构化…

Qt - 控件和布局

文章目录 添加按钮 QPushButton自定义控件对象树坐标系 https://www.bilibili.com/video/BV1g4411H78N?p6 添加按钮 QPushButton 添加控件到窗口&#xff0c;需要添加内容到 mywidget.cpp #include "mywidget.h" #include <QPushButton> //按钮控件的头文件…

React 中 {} 的应用

列表渲染&#xff1a; 1.使用数组的 map 方法&#xff08;因为map 可以映射&#xff09; 2、列表要添加 key 属性&#xff0c;值要唯一 // 导入 // 用来获取 dom元素 import { createRoot } from "react-dom/client";// 内容 const contentArr [{ id: 1, name: &…

提高公文写作效率,可以采用模板和样例来辅助写作

采用模板和样例是提高公文写作效率的一种常见方法。 模板是指已经制作好的公文格式和结构模板&#xff0c;可以根据模板来组织和排版自己的文章&#xff0c;以减少排版时间和排版错误。常见的模板包括各类公文格式&#xff0c;例如通知、报告、请示等等。在使用模板的过程中&am…

java后端校验

Java 后端数据校验 一、概述 当我们想提供可靠的 API 接口&#xff0c;对参数的校验&#xff0c;以保证最终数据入库的正确性&#xff0c;是 必不可少 的活。比如下图就是 我们一个项目里 新增一个菜单校验 参数的函数&#xff0c;写了一大堆的 if else 进行校验&#xff0c;…

GPT4ALL私有化部署 01 | Python环境

进入以下链接&#xff1a; https://www.python.org/downloads/release/python-3100/ 滑动到底部 选择你系统对应的版本&#xff0c;如果你是win&#xff0c;那么大概率是win-64bit 有可能你会因为网络的问题导致下载不了&#xff0c;我提供了 链接 接着只需要打开 等待…

单例模式与构造器模式

单例模式 1、是什么 单例模式&#xff08;Singleton Pattern&#xff09;&#xff1a;创建型模式&#xff0c;提供了一种创建对象的最佳方式&#xff0c;这种模式涉及到一个单一的类&#xff0c;该类负责创建自己的对象&#xff0c;同时确保只有单个对象被创建 在应用程序运…