【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]

        此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。


runtime.images.initOpenCvIfNeeded();
importClass(java.util.ArrayList);
importClass(java.util.List);
importClass(java.util.LinkedList);
importClass(org.opencv.imgproc.Imgproc);
importClass(org.opencv.imgcodecs.Imgcodecs);
importClass(org.opencv.core.Core);
importClass(org.opencv.core.Mat);
importClass(org.opencv.core.MatOfDMatch);
importClass(org.opencv.core.MatOfKeyPoint);
importClass(org.opencv.core.MatOfRect);
importClass(org.opencv.core.Size);
importClass(org.opencv.features2d.DescriptorMatcher);
importClass(org.opencv.features2d.Features2d);
importClass(org.opencv.features2d.SIFT);
importClass(org.opencv.features2d.ORB);
importClass(org.opencv.features2d.BRISK);
importClass(org.opencv.features2d.AKAZE);
importClass(org.opencv.features2d.BFMatcher);
importClass(org.opencv.core.MatOfPoint2f);
importClass(org.opencv.calib3d.Calib3d);
importClass(org.opencv.core.CvType);
importClass(org.opencv.core.Point);
importClass(org.opencv.core.Scalar);
importClass(org.opencv.core.MatOfByte);/** 用法示例:* var image1 = captureScreen();* var image2 = images.read('xxxx');* match(image1, image2);*/function match(img1, img2, method) {console.time("匹配耗时");// 指定特征点算法SIFTvar match_alg = null;if(method == 'sift') {match_alg = SIFT.create();}else if(method == 'orb') {match_alg = ORB.create();}else if(method == 'brisk') {match_alg = BRISK.create();}else {match_alg = AKAZE.create();}var bigTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img1)), Imgcodecs.IMREAD_UNCHANGED);var smallTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img2)), Imgcodecs.IMREAD_UNCHANGED);// 转灰度图// console.log("转灰度图");var big_trainImage_gray = new Mat(bigTrainImage.rows(), bigTrainImage.cols(), CvType.CV_8UC1);var small_trainImage_gray = new Mat(smallTrainImage.rows(), smallTrainImage.cols(), CvType.CV_8UC1);Imgproc.cvtColor(bigTrainImage, big_trainImage_gray, Imgproc.COLOR_BGR2GRAY);Imgproc.cvtColor(smallTrainImage, small_trainImage_gray, Imgproc.COLOR_BGR2GRAY);// 获取图片的特征点// console.log("detect");var big_keyPoints = new MatOfKeyPoint();var small_keyPoints = new MatOfKeyPoint();match_alg.detect(bigTrainImage, big_keyPoints);match_alg.detect(smallTrainImage, small_keyPoints);// 提取图片的特征点// console.log("compute");var big_trainDescription = new Mat(big_keyPoints.rows(), 128, CvType.CV_32FC1);var small_trainDescription = new Mat(small_keyPoints.rows(), 128, CvType.CV_32FC1);match_alg.compute(big_trainImage_gray, big_keyPoints, big_trainDescription);match_alg.compute(small_trainImage_gray, small_keyPoints, small_trainDescription);// console.log("matcher.train");var matcher = new BFMatcher();matcher.clear();var train_desc_collection = new ArrayList();train_desc_collection.add(big_trainDescription);// vector<Mat>train_desc_collection(1, trainDescription);matcher.add(train_desc_collection);matcher.train();// console.log("knnMatch");var matches = new ArrayList();matcher.knnMatch(small_trainDescription, matches, 2);//对匹配结果进行筛选,依据distance进行筛选// console.log("对匹配结果进行筛选");var goodMatches = new ArrayList();var nndrRatio = 0.8;var len = matches.size();for (var i = 0; i < len; i++) {var matchObj = matches.get(i);var dmatcharray = matchObj.toArray();var m1 = dmatcharray[0];var m2 = dmatcharray[1];if (m1.distance <= m2.distance * nndrRatio) {goodMatches.add(m1);}}var matchesPointCount = goodMatches.size();//当匹配后的特征点大于等于 4 个,则认为模板图在原图中,该值可以自行调整if (matchesPointCount >= 4) {log("模板图在原图匹配成功!");var templateKeyPoints = small_keyPoints;var originalKeyPoints = big_keyPoints;var templateKeyPointList = templateKeyPoints.toList();var originalKeyPointList = originalKeyPoints.toList();var objectPoints = new LinkedList();var scenePoints = new LinkedList();var goodMatchesList = goodMatches;var len = goodMatches.size();for (var i = 0; i < len; i++) {var goodMatch = goodMatches.get(i);objectPoints.addLast(templateKeyPointList.get(goodMatch.queryIdx).pt);scenePoints.addLast(originalKeyPointList.get(goodMatch.trainIdx).pt);}var objMatOfPoint2f = new MatOfPoint2f();objMatOfPoint2f.fromList(objectPoints);var scnMatOfPoint2f = new MatOfPoint2f();scnMatOfPoint2f.fromList(scenePoints);//使用 findHomography 寻找匹配上的关键点的变换var homography = Calib3d.findHomography(objMatOfPoint2f, scnMatOfPoint2f, Calib3d.RANSAC, 3);/*** 透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。*/var templateCorners = new Mat(4, 1, CvType.CV_32FC2);var templateTransformResult = new Mat(4, 1, CvType.CV_32FC2);var templateImage = smallTrainImage;var doubleArr = util.java.array("double", 2);doubleArr[0] = 0;doubleArr[1] = 0;templateCorners.put(0, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = 0;templateCorners.put(1, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = templateImage.rows();templateCorners.put(2, 0, doubleArr);doubleArr[0] = 0;doubleArr[1] = templateImage.rows();templateCorners.put(3, 0, doubleArr);//使用 perspectiveTransform 将模板图进行透视变以矫正图象得到标准图片Core.perspectiveTransform(templateCorners, templateTransformResult, homography);//矩形四个顶点var pointA = templateTransformResult.get(0, 0);var pointB = templateTransformResult.get(1, 0);var pointC = templateTransformResult.get(2, 0);var pointD = templateTransformResult.get(3, 0);var y0 = Math.round(pointA[1])>0?Math.round(pointA[1]):0;var y1 = Math.round(pointC[1])>0?Math.round(pointC[1]):0;var x0 = Math.round(pointD[0])>0?Math.round(pointD[0]):0;var x1 = Math.round(pointB[0])>0?Math.round(pointB[0]):0;console.timeEnd("匹配耗时");return {x: x0, y: y0};} else {console.timeEnd("匹配耗时");log("模板图不在原图中!");return null;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93972.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode热题100】--108.将有序数组转换为二叉搜索树

108.将有序数组转换为二叉搜索树 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 二叉搜索树的中序遍历是升序…

flink生成水位线记录方式--基于特殊记录的水位线生成器

背景 在flink基于事件的时间处理中&#xff0c;水位线记录的生成是一个很重要的环节&#xff0c;本文就来记录下几种水位线记录的生成方式的其中一种&#xff1a;基于特殊记录的水位线生成器 基于特殊记录的水位线生成器 我们发送的事件中&#xff0c;如果带有某条特殊记录的…

Monkey命令

shell, monkey, system, Android, 文件系统Monkey, 示例, 简介 一、Monkey测试简介 Monkey测试是Android平台自动化测试的一种手段&#xff0c;通过Monkey程序模拟用户触摸屏幕、滑动Trackball、按键等操作来对设备上的程序进行压 力测试&#xff0c;检测程序多久的时间会发生…

13链表-简单思路练习

目录 LeetCode之路——876. 链表的中间结点 分析&#xff1a; 解法一&#xff1a;常规思路 解法二&#xff1a;快慢指针 LeetCode之路——876. 链表的中间结点 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回…

竞赛 机器视觉opencv答题卡识别系统

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 答题卡识别系统 - opencv python 图像识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分…

互联网Java工程师面试题·ZooKeeper 篇·第一弹

目录 1. ZooKeeper 面试题&#xff1f; 2. ZooKeeper 提供了什么&#xff1f; 3. Zookeeper 文件系统 4. ZAB 协议&#xff1f; 5. 四种类型的数据节点 Znode 6. Zookeeper Watcher 机制 -- 数据变更通知 7. 客户端注册 Watcher 实现 8. 服务端处理 Watcher 实现 9. 客…

CSS 选择器-认识并应用选择器

CSS选择器是用来定位HTML或XML文档中的元素的模式。以下是一些常见的CSS选择器&#xff0c;以及对应的样例代码&#xff1a; 标签选择器&#xff1a;选择所有指定标签的元素。 示例代码&#xff1a; p {font-size: 16px; }类选择器&#xff1a;选择所有指定类名的元素。 示…

ArcGIS Engine:实现Shp/Mxd数据的加载、图层的简单查询

本博客参考&#xff1a;BiliBili UP主 <羊羊旸> &#xff1a; Arcgis Engine学习 目录 01 加载控件以及控件的基本信息等调整 02 编写 <菜单-地图控件> 中各个子工具的代码 2.1 加载Shapefile数据-代码 2.2 加载地图文档数据-代码 2.3 获取图层数量-代码 2.…

vue3 +elementplus | vue2+elementui 动态地通过验证规则子新增或删除单个表单字段

效果图 点击 ‘’ 新增一行&#xff0c;点击‘-’ 删除一行 vue3elementplus写法 template <el-dialog v-model"dialogFormVisible" :title"title"><el-form ref"ruleFormRef" :model"form" :inline"true" lab…

Redis Cluster Gossip Protocol: Message

返回目录 消息结构 消息头部消息数据&#xff08;可选&#xff09;extension&#xff08;可选&#xff09; 消息头部 字段定义 Signature: “RCmb” 这4个字符&#xff08;Redis Cluster message bus 的简称&#xff09;totalLen: 消息的总字节数version&#xff1a;当前为…

【算法|动态规划No.8】leetcode面试题 17.16. 按摩师

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

【TCP和UDP通信】多发多收

TCP和UDP通信——多发多收 UDP通信 1.客户端可以反复发送数据 客户端实现步骤 &#xff08;1&#xff09;创建DatagramSocket对象&#xff08;发送端对象&#xff09; &#xff08;2&#xff09;使用while死循环不断的接收用户的数据输入&#xff0c;如果用户输入”886”则退…

ES / Kibana 快速安装配置记录

ES / Kibana 快速安装配置记录 支持一览表 | Elastic Download Elasticsearch | Elastic Download Kibana Free | Get Started Now | Elastic wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repowget -O /etc/yum.repos.d/epel-7.rep…

对图像中边、线、点的检测(支持平面/鱼眼/球面相机)附源码

前言 图像的线段检测是计算机视觉和遥感技术中的一个基本问题,可广泛应用于三维重建和 SLAM 。虽然许多先进方法在线段检测方面表现出了良好的性能,但对未去畸变原始图像的线 段检测仍然是一个具有挑战性的问题。此外,对于畸变和无畸变的图像都缺乏统一的…

1.2.C++项目:仿muduo库实现并发服务器之时间轮的设计

文章目录 一、为什么要设计时间轮&#xff1f;&#xff08;一&#xff09;简单的秒级定时任务实现&#xff1a;&#xff08;二&#xff09;Linux提供给我们的定时器&#xff1a;1.原型2.例子 二、时间轮&#xff08;一&#xff09;思想&#xff08;一&#xff09;代码 一、为什…

Android AMS——Activity Pause(八)

在前面的文章《Android AMS——ATMS解析(四)》中,介绍了 Activity 的启动流程,其中调用到 Task.resumeTopActivityInnerLocked() 时,会先调用 startPausingLocked 暂停前一个 Activity,在启动新的 Activity。 这里我们就看以下 Activity 的暂停流程。 一、Activity暂停流…

云原生数据库TDSQL-C

数据库系统核心模块 云原生数据库要解决什么问题&#xff1f; HTAP 云数据库VS云原生数据库

mysql双主互从通过KeepAlived虚拟IP实现高可用

mysql双主互从通过KeepAlived虚拟IP实现高可用 在mysql 双主互从的基础上&#xff0c; 架构图&#xff1a; Keepalived有两个主要的功能&#xff1a; 提供虚拟IP&#xff0c;实现双机热备通过LVS&#xff0c;实现负载均衡 安装 # 安装 yum -y install keepalived # 卸载 …

Polygon Miden交易模型:Actor模式 + ZKP => 并行 + 隐私

1. 引言 前序博客&#xff1a; Polygon Miden&#xff1a;扩展以太坊功能集的ZK-optimized rollupPolygon Miden zkRollup中的UTXO账户混合状态模型 Polygon Miden为&#xff1a; ZK-optimized rollup由客户端生成证明完善Polygon ZK系列解决方案&#xff0c;致力于成为网络…

【C语言经典100例题-68】有n个整数,使其前面各数顺序向后移m个位置,最后m个数变成最前面的m个数

方法一 将原数组拆成两部分&#xff0c;前面n-m个数和后面m个数。首先将前面n-m个数逆序&#xff0c;然后将后面的m个数逆序。最后将整个数组逆序即可。 #include <stdio.h>void reverse(int arr[], int start, int end) {for (int i start, j end; i < (start en…