读者写者问题—内含408真题

读者写者问题—含408

一、问题描述

一个数据问价或记录可以被多个进程共享,我们把只读该文件的进程称为“读者进程”,其他进程为“写者进程”。允许多个进程同时读一个共享对象,但不允许一个写者进程和其他写者进程或读者进程同时访问共享对象。即:保证一个写者进程必须与其他进程互斥的访问共享对象的同步问题;读者-写者问题常用来测试新同步原语。

二、解题思路

首先对于上述问题进行抽象:读者和写者是互斥的,写者和写者是互斥的,读者和读者不互斥;两类进程,一种是写者,另一种是读者。写者很好实现,因为它和其他任何进程都是互斥的,因此对每一个写者进程都给一个互斥信号量的P、V操作即可;而读者进程的问题就较为复杂,它与写者进程是互斥的,而又与其他的读者进程是同步的,因此不能简单的利用P、V操作解决。
下面我们给出三种方案来解决读者和写者之间、读者和读者之间、写者和写者之间的同步与互斥问题:

2.1 读者优先算法(一般意义上的读者写者问题)

为实现Reader和Writer进程之间在读或写时的互斥而设置了一个互斥信号量wmutex。再设置一个整型变量conut表示正在读的进程数目。
仅当count=0时,Reader进程才需要执行P(wmutex)操作;
仅当Reader进程在执行了count减一操作后其值为0时,才需要执行V(wmutex)操作
由于count是一个可被多个Reader进程访问的临界资源,因此为其设置一个互斥信号量cmutex;
其伪码描述如下:

semaphore cmutex=1,wmutex=1;
int count=0;void Reader(){while(1){P(cmutex);if(count==0)P(wmutex);count++;V(cmutex);read;P(cmutex);count--;if(count==0)V(wmutex);V(cmutex);}
}void Writer(){while(1){P(wmutex);write;V(wmutex);}
}

等待Reader进程全部结束之后才逐步执行Writer进程。我们称这样的算法为读者优先算法,也就是说,当存在读进程时,写操作将被延迟,并且只要有一个读进程活跃,随后而来的读进程都将被允许访问文件。这样的方式下,会导致写进程可能长时间等待,且存在写进程“饿死”的情况。


2.2 写者优先算法

所谓写者优先,即:当有读者进程正在执行,写者进程发出申请,这时应该拒绝其他读者进程的请求,等待当前读者进程结束后立即执行写者进程,只有在无写者进程执行的情况下才能够允许读者进程再次运行。
为此,增加一个信号量并且在上面的程序中 writer()和reader()函数中各增加一对PV操作,就可以得到写进程优先的解决程序。

  • 在读者优先的基础上增加信号量rmutex,初值是1,用于禁止所有的读进程。
  • 增加一个记数器,即整型变量writecount,记录写者数,初值是0(原count改为readcount)。
  • writecount为多个写者共享的变量,是临界资源。用互斥信号量wmutex控制, wmutex初值是1
  • mutex用于实现互斥访问缓冲区
    伪码描述如下:
semaphore rmutex=1,cmutex=1,wmutex=1,mutex=1;
int readcount=0,writecount=0;void Reader(){while(1){/**新增代码**/P(rmutex);// 取到该信号量说明此时并没有写进程在等待// 后续读者才可以共享访问临界区// 但是前面已经进入的读进程不受影响/**********/P(cmutex);if(readcount==0)P(mutex);readcount++;V(cmutex);/**新增代码**/V(rmutex);// 已经取到过这个信号量了// 那么就说明已经得到了对临界区的读访问权限// 此时可以一起读/**********/		read;V(cmutex);readcount--;if(readcount==0)V(mutex);V(cmutex);}
}void Writer(){while(1){/**新增代码**/P(wmutex);writecount++;if(writecount==1)// 第一个写进程进来等待以后就P(rmutex);	 // 禁止读进程继续读了V(wmutex);/***********/P(mutex);write;V(mutex);/**新增代码**/P(wmutex);writecount--;if(writecount==0)//当没有写进程时,才允许读进程继续读V(rmutex);V(wmutex);/***********/}
}

2.3 读写公平

为实现读写公平,我们必须要同时满足以下四个条件:

  • 读者写者的优先级相同
  • 读者、写者互斥访问
  • 只允许有一个写者访问临界区
  • 可以有多个读者同时访问临界区的资源
    为此,我们设置一个互斥信号量mutex,其作用是让每个Writer进程和Reader进程进行公平争夺
  • 当Reader争夺到了,那么不管他是不是第一个Reader,他都有权利进入读操作(但是在进行读操作之前,需要释放这个互斥信号量,供后续的Reader和Writer继续公平争夺)
  • 当Writer争夺到了,就等待之前的Reader全部执行完,就可以上处理机运行
semaphore cmutex=1,wmutex=1,mutex=1;
int count=0;void Reader(){while(1){/**新增代码**/P(mutex);//争夺优先权/**********/P(cmutex);if(count==0)P(wmutex);count++;V(cmutex);/**新增代码**/V(mutex);/**********/read;P(cmutex);count--;if(count==0)V(wmutex);V(cmutex);}
}void Writer(){while(1){/**新增代码**/P(mutex);//争夺优先权/**********/P(wmutex);write;V(wmutex);/**新增代码**/V(mutex);/**********/}
}

这个最主要的思路就是让每一次运行的进程都有公平竞争的权利
因为读者优先算法,当读者上处理机运行后,写者就丧失了竞争的权利,只有当读者全部读完才可以重新竞争,这很不公平

2.4 双读者问题(2017年408真题)

先说明一下,双读者问题实际上并不存在,只是针对这道题提出的概念,由于使用常规的读者写者算法会导致并发度不够,所以特地将真题单独作为一个问题考虑

在这里插入图片描述
口说无凭,不如使用对比来更直观地展现其区别吧
首先是使用读者写者问题来解决该问题的算法:

semaphore mutex_x=1;// 对x的互斥访问
semaphore mutex_y=1;// 对y的互斥访问
semaphore mutex_z=1;// 对z的互斥访问
semaphore mutex_count=1;// 对计数器的互斥访问
int count=0;//计数器void thread1(){cnum w;P(mutex_count);if(count==0)P(mutex_y);count++;V(mutex_count);P(mutex_x);w = add(x,y);V(mutex_x);P(mutex_count);count--;if(count==0)V(mutex_y);V(mutex_count);}void thread2(){cnum w;P(mutex_count);if(count==0)P_(mutex_y);count++;V(mutex_count);P(mutex_z);w = add(y,z);V(mutex_z);P(mutex_count);count--;	if(count==0)V(mutex_y);V(mutex_count);	
}void thread3(){cnum w;w.a = 1;w.b = 1;P(mutex_z);z = add(z,w);V(mutex_z);P(mutex_y);y = add(y,w);V(mutex_y);
}

乍一看好像没啥问题,但是有一个很重要的问题是,虽然对于y的访问,实现了读写互斥,同时读与读可以同时进行,但是count信号量限制了并发度,导致两个读操作并不能以最快的方式运行完
下面是标准答案:

semaphore mutex_x=1;// 对x的互斥访问
semaphore mutex_y1=1;// 对y的互斥访问
semaphore mutex_y2=1;// 对y对互斥访问
semaphore mutex_z=1;// 对z的互斥访问
void thread1(){cnum w;P(mutex_y1);P(mutex_x);w = add(x,y);V(mutex_x);V(mutex_y1);
}void thread2(){cnum w;P(mutex_y2);P(mutex_z);w = add(y,z);V(mutex_z);V(mutex_y2);	
}void thread3(){cnum w;w.a = 1;w.b = 1;P(mutex_z);z = add(z,w);V(mutex_z);P(mutex_y1);// 只有同时拥有互斥信号量P(mutex_y2);// 才算是获取了访问权限y = add(y,w);V(mutex_y1);V(mutex_y2);
}

上面的代码,可以大大提高并发度,因为1,2两个线程也可以保证在读y时是绝对并行的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】堆排序和top-k问题

目录 1.堆排序 2.top-k问题 1.堆排序 我们已经介绍了向上调整算法和向下调整算法建堆,可以建一个小堆或大堆,对于这种方式建立的大堆或小堆,我们只能选出最大的和最小的数,对于次大或次小的数,只能重新建堆&#x…

详解Avast Driver Updater:电脑驱动更新工具的利器还是多余的软件?

亲爱的读者朋友们,你是不是经常为电脑的驱动问题而烦恼?如果是的话,你可能会对这款软件——Avast Driver Updater 电脑驱动更新工具感兴趣。但在你决定尝试之前,不妨先和我一起深入探讨一下它的优点、缺点以及它适用的使用场景。 …

UE5.1编辑器拓展【二、脚本化资产行为,快速更改资产名字,1.直接添加前缀或后缀2.通过资产类判断添加修改前缀】

目录 了解相关的函数 第一种做法:自定义添加选择资产的前缀或后缀 代码 效果 第二种做法:通过映射来获取资产类型添加前缀和修改前缀 映射代码 代码 效果 在之前一章中,我们创建了插件,用来扩展编辑器的使用: …

十八,镜面IBL-打印预过滤环境贴图

前面打印了各个级别的hdr环境贴图&#xff0c;也能看到预过滤环境贴图&#xff0c;现在进行打印各个级别的预过滤环境贴图。 运行结果如下 代码如下&#xff1a; #include <osg/TextureCubeMap> #include <osg/TexGen> #include <osg/TexEnvCombine> #…

JUC——并发编程—第二部分

集合类不安全 list不安全 //报错 java.util.ConcurrentModificationException public class ListTest {public static void main(String[] args) {List<String> list new CopyOnWriteArrayList<>();//并发下Arrayist边读边写会不安全的/*** 解决方案&#xff1a…

iPhone苹果手机复制粘贴内容提示弹窗如何取消关闭提醒?

经常使用草柴APP查询淘宝、天猫、京东商品优惠券拿购物返利的iPhone苹果手机用户&#xff0c;复制商品链接后打开草柴APP粘贴商品链接查券时总是弹窗提示粘贴内容&#xff0c;为此很多苹果iPhone手机用户联系客服询问如何关闭iPhone苹果手机复制粘贴内容弹窗提醒功能的方法如下…

Java-API简析_java.util.Objects类(基于 Latest JDK)(浅析源码)

【版权声明】未经博主同意&#xff0c;谢绝转载&#xff01;&#xff08;请尊重原创&#xff0c;博主保留追究权&#xff09; https://blog.csdn.net/m0_69908381/article/details/133463511 出自【进步*于辰的博客】 因为我发现目前&#xff0c;我对Java-API的学习意识比较薄弱…

Linux Ubuntu配置Git的方法

本文介绍在Linux操作系统的Ubuntu版本中&#xff0c;配置分布式开源版本控制系统Git&#xff0c;随后基于Git克隆GitHub中项目的代码的详细方法。 在之前的文章分布式版本控制系统Git的下载、安装与使用其复制GitHub项目代码的方法&#xff08;https://blog.csdn.net/zhebushib…

【前段基础入门之】=>你不知道的 CSS 选择器的进阶使用!

导语&#xff1a; 在上一章节中&#xff0c;我们了解了 CSS 的一些基本语法概念&#xff0c;那么在这一章节中我们就带来 CSS 选择器知识的分享&#xff0c;选择器这一章的知识点有一点多&#xff0c;不过我们只要认真去理解&#xff0c;学习它也是没什么问题的&#xff0c;还有…

【模型压缩】Distiller学习-初认识

Distiller学习-初认识 简介 Intel AILab的神经网络压缩框架&#xff0c;建立在Pytorch基础上 安装 压缩方法 权重正则化方法权重剪枝方法训练后量化方法训练时量化方法条件计算低质分解方法知识蒸馏方法 总体目录 核心代码实现 所有案例的配置文件 举例 初始化网络评价网络…

基于Vue和Element UI实现前后端分离和交互

目录 前言 一、Element UI简介 1.Element UI是什么 2.Element UI的特点 二、项目搭建 1.创建一个SPA项目 2.安装 Element-UI 3.导入组件 4.创建登陆注册界面 登录组件---Login.vue 注册组件---Register.vue 定义组件与路由的对应关系 效果演示&#xff1a; 三、前…

1.4.C++项目:仿muduo库实现并发服务器之buffer模块的设计

项目完整版在&#xff1a; 一、buffer模块&#xff1a; 缓冲区模块 Buffer模块是一个缓冲区模块&#xff0c;用于实现通信中用户态的接收缓冲区和发送缓冲区功能。 二、提供的功能 存储数据&#xff0c;取出数据 三、实现思想 1.实现换出去得有一块内存空间&#xff0c;采…

Redis与分布式-集群搭建

接上文 Redis与分布式-哨兵模式 1. 集群搭建 搭建简单的redis集群&#xff0c;创建6个配置&#xff0c;开启集群模式&#xff0c;将之前配置过的redis删除&#xff0c;重新复制6份 针对主节点redis 1&#xff0c;redis 2&#xff0c;redis 3都是以上修改内容&#xff0c;只是…

十、空闲任务及其钩子函数

1、空闲任务的介绍 (1)一个良好的程序&#xff0c;它的任务都是事件驱动的&#xff1a;平时大部分时间处于阻塞状态。 (2)有可能我们自己创建的所有任务都无法执行&#xff0c;但是调度器必须能找到一个可以运行的任务。所以&#xff0c;我们要提供空闲任务。 (3)在使用vTas…

格拉姆角场GAF将时序数据转换为图像并应用于凯斯西楚大学轴承故障诊断(Python代码,CNN模型)

1.运行效果&#xff1a; 格拉姆角场GAF将时序数据转换为图像并应用于故障诊断&#xff08;Python代码&#xff09;_哔哩哔哩_bilibili 环境库 只要tensorflow版本大于等于2.4.0即可运行 2.GAF的内容 GAF是一种用于时间序列数据可视化和特征提取的技术&#xff0c;通常用于…

Linux——补充点(进程切换及页表映射)

目录 补充点1&#xff1a;进程地址空间堆区管理 补充点2&#xff1a;Linux内核进程上下文切换 补充点3&#xff1a;页表映射 补充点4&#xff1a;两级页表 补充点1&#xff1a;进程地址空间堆区管理 Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程&#…

keil调试的时候没问题,下载时候没反应

今天遇到这样一个问题。我下载商家的代码例程后单片机没反应&#xff0c;进入调试的时候一切正常。很奇怪&#xff0c;在网上找了教程问题解决&#xff0c;总结一下。 原因在于程序下载进去后没有按下复位键&#xff0c;导致还是之前的程序。我之前设置的是下载后自动复位运行…

【STL】用一棵红黑树封装map和set

⭐博客主页&#xff1a;️CS semi主页 ⭐欢迎关注&#xff1a;点赞收藏留言 ⭐系列专栏&#xff1a;C进阶 ⭐代码仓库&#xff1a;C进阶 家人们更新不易&#xff0c;你们的点赞和关注对我而言十分重要&#xff0c;友友们麻烦多多点赞&#xff0b;关注&#xff0c;你们的支持是我…

玩转gpgpu-sim 04记—— __cudaRegisterBinary() of gpgpu-sim 到底做了什么

官方文档&#xff1a; GPGPU-Sim 3.x Manual __cudaRegisterBinary(void*) 被执行到的代码逻辑如下&#xff1a; void** CUDARTAPI __cudaRegisterFatBinary( void *fatCubin ) { #if (CUDART_VERSION < 2010)printf("GPGPU-Sim PTX: ERROR ** this version of GPGPU…

小程序如何设置余额充值

在小程序中设置余额充值是一种非常有效的方式&#xff0c;可以帮助商家吸引更多的会员并提高用户的消费频率。下面将介绍如何在小程序中设置余额充值并使用。 第一步&#xff1a;创建充值方案 在小程序管理员后台->营销管理->余额充值页面&#xff0c;添加充值方案。可…