计算机网络之传输层

计算机网络 - 传输层

  • 计算机网络 - 传输层
    • UDP 和 TCP 的特点
    • UDP 首部格式
    • TCP 首部格式
    • TCP 的三次握手
    • TCP 的四次挥手
    • TCP 可靠传输
    • TCP 滑动窗口
    • TCP 流量控制
    • TCP 拥塞控制
      • 1. 慢开始与拥塞避免
      • 2. 快重传与快恢复

网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。传输层提供了进程间的逻辑通信,传输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看起来像是在两个传输层实体之间有一条端到端的逻辑通信信道。

UDP 和 TCP 的特点

  • 用户数据报协议 UDP(User Datagram Protocol)是无连接的,尽最大可能交付,没有拥塞控制,面向报文(对于应用程序传下来的报文不合并也不拆分,只是添加 UDP 首部),支持一对一、一对多、多对一和多对多的交互通信。

  • 传输控制协议 TCP(Transmission Control Protocol)是面向连接的,提供可靠交付,有流量控制,拥塞控制,提供全双工通信,面向字节流(把应用层传下来的报文看成字节流,把字节流组织成大小不等的数据块),每一条 TCP 连接只能是点对点的(一对一)。

UDP 首部格式


首部字段只有 8 个字节,包括源端口、目的端口、长度、检验和。12 字节的伪首部是为了计算检验和临时添加的。

TCP 首部格式


  • 序号 :用于对字节流进行编号,例如序号为 301,表示第一个字节的编号为 301,如果携带的数据长度为 100 字节,那么下一个报文段的序号应为 401。

  • 确认号 :期望收到的下一个报文段的序号。例如 B 正确收到 A 发送来的一个报文段,序号为 501,携带的数据长度为 200 字节,因此 B 期望下一个报文段的序号为 701,B 发送给 A 的确认报文段中确认号就为 701。

  • 数据偏移 :指的是数据部分距离报文段起始处的偏移量,实际上指的是首部的长度。

  • 确认 ACK :当 ACK=1 时确认号字段有效,否则无效。TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置 1。

  • 同步 SYN :在连接建立时用来同步序号。当 SYN=1,ACK=0 时表示这是一个连接请求报文段。若对方同意建立连接,则响应报文中 SYN=1,ACK=1。

  • 终止 FIN :用来释放一个连接,当 FIN=1 时,表示此报文段的发送方的数据已发送完毕,并要求释放连接。

  • 窗口 :窗口值作为接收方让发送方设置其发送窗口的依据。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。

TCP 的三次握手


假设 A 为客户端,B 为服务器端。

  • 首先 B 处于 LISTEN(监听)状态,等待客户的连接请求。

  • A 向 B 发送连接请求报文,SYN=1,ACK=0,选择一个初始的序号 x。

  • B 收到连接请求报文,如果同意建立连接,则向 A 发送连接确认报文,SYN=1,ACK=1,确认号为 x+1,同时也选择一个初始的序号 y。

  • A 收到 B 的连接确认报文后,还要向 B 发出确认,确认号为 y+1,序号为 x+1。

  • B 收到 A 的确认后,连接建立。

三次握手的原因

第三次握手是为了防止失效的连接请求到达服务器,让服务器错误打开连接。

客户端发送的连接请求如果在网络中滞留,那么就会隔很长一段时间才能收到服务器端发回的连接确认。客户端等待一个超时重传时间之后,就会重新请求连接。但是这个滞留的连接请求最后还是会到达服务器,如果不进行三次握手,那么服务器就会打开两个连接。如果有第三次握手,客户端会忽略服务器之后发送的对滞留连接请求的连接确认,不进行第三次握手,因此就不会再次打开连接。

TCP 的四次挥手


以下描述不讨论序号和确认号,因为序号和确认号的规则比较简单。并且不讨论 ACK,因为 ACK 在连接建立之后都为 1。

  • A 发送连接释放报文,FIN=1。

  • B 收到之后发出确认,此时 TCP 属于半关闭状态,B 能向 A 发送数据但是 A 不能向 B 发送数据。

  • 当 B 不再需要连接时,发送连接释放报文,FIN=1。

  • A 收到后发出确认,进入 TIME-WAIT 状态,等待 2 MSL(最大报文存活时间)后释放连接。

  • B 收到 A 的确认后释放连接。

四次挥手的原因

客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器会发送 FIN 连接释放报文。

TIME_WAIT

客户端接收到服务器端的 FIN 报文后进入此状态,此时并不是直接进入 CLOSED 状态,还需要等待一个时间计时器设置的时间 2MSL。这么做有两个理由:

  • 确保最后一个确认报文能够到达。如果 B 没收到 A 发送来的确认报文,那么就会重新发送连接释放请求报文,A 等待一段时间就是为了处理这种情况的发生。

  • 等待一段时间是为了让本连接持续时间内所产生的所有报文都从网络中消失,使得下一个新的连接不会出现旧的连接请求报文。

TCP 可靠传输

TCP 使用超时重传来实现可靠传输:如果一个已经发送的报文段在超时时间内没有收到确认,那么就重传这个报文段。

一个报文段从发送再到接收到确认所经过的时间称为往返时间 RTT,加权平均往返时间 RTTs 计算如下:


其中,0 ≤ a < 1,RTTs 随着 a 的增加更容易受到 RTT 的影响。

超时时间 RTO 应该略大于 RTTs,TCP 使用的超时时间计算如下:


其中 RTT d 为偏差的加权平均值。

TCP 滑动窗口

窗口是缓存的一部分,用来暂时存放字节流。发送方和接收方各有一个窗口,接收方通过 TCP 报文段中的窗口字段告诉发送方自己的窗口大小,发送方根据这个值和其它信息设置自己的窗口大小。

发送窗口内的字节都允许被发送,接收窗口内的字节都允许被接收。如果发送窗口左部的字节已经发送并且收到了确认,那么就将发送窗口向右滑动一定距离,直到左部第一个字节不是已发送并且已确认的状态;接收窗口的滑动类似,接收窗口左部字节已经发送确认并交付主机,就向右滑动接收窗口。

接收窗口只会对窗口内最后一个按序到达的字节进行确认,例如接收窗口已经收到的字节为 {31, 34, 35},其中 {31} 按序到达,而 {34, 35} 就不是,因此只对字节 31 进行确认。发送方得到一个字节的确认之后,就知道这个字节之前的所有字节都已经被接收。


TCP 流量控制

流量控制是为了控制发送方发送速率,保证接收方来得及接收。

接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

TCP 拥塞控制

如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。


TCP 主要通过四个算法来进行拥塞控制:慢开始、拥塞避免、快重传、快恢复。

发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。

为了便于讨论,做如下假设:

  • 接收方有足够大的接收缓存,因此不会发生流量控制;
  • 虽然 TCP 的窗口基于字节,但是这里设窗口的大小单位为报文段。

1. 慢开始与拥塞避免

发送的最初执行慢开始,令 cwnd = 1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 …

注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能性也就更高。设置一个慢开始门限 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。

如果出现了超时,则令 ssthresh = cwnd / 2,然后重新执行慢开始。

2. 快重传与快恢复

在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2 的确认。

在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3

在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd / 2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。

慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91701.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件(二)——kafka

文章目录 Apache Kafka综述什么是消息系统?点对点消息类型发布-订阅消息类型 什么是Kafka?优点关键术语Kafka基本原理用例 Apache Kafka综述 在大数据中,会使用到大量的数据。面对这些海量的数据,我们一是需要做到能够收集这些数据&#xf…

安全渗透测试基础之漏洞扫描工具之Nessus使用介绍

前置条件:Nessus工具使用前要确保工具是服务状态 systemctl start nessusd.service 启动nessus服务 systemctl status nessusd.service 查看nessus服务状态 1.配置扫描模板 2.新增高级扫描 2.1 设置日程表: 2.2设置邮件收件人(可选): 2.3主机发现: 2.

Egg 封装接口返回信息

中间件封装 代码 const msgArr {"200":成功,"401":token失效 } module.exports (option, app) > {return async function(ctx, next) {try{//成功是返回的信息ctx.emit(code,data,msg)>{console.log(1111,code,data,msg)ctx.body {code,data:dat…

递推+模拟---想好如何存储?

递推模拟 输入输出问题CCF-CSP考试历年真题题型分类分组输入——可能有多组测试数据,对于每组数据 递推---从前面已知态--->后续未知态AcWing 3777. 砖块AcWing 1208. 翻硬币AcWing 1211. 蚂蚁感冒AcWing 3433. 吃糖果AcWing 821. 跳台阶 模拟202212-2-csp-训练计…

点亮一个LED+LED闪烁+LED流水灯——“51单片机”

各位CSDN的uu们好呀,这是小雅兰的最新专栏噢,最近小雅兰学习了51单片机的知识,所以就想迫不及待地分享出来呢!!!下面,让我们进入51单片机的世界吧!!! 点亮一个…

NLP 02 RNN

一、RNN RNN(Recurrent Neural Network),中文称作循环神经网络它一般以序列数据为输入通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。 传统神经网络(包括CNN),输入和输出都是互相独立的。但有些任务,后续的输出和之前…

华为云云耀云服务器L实例评测 | MacOS系统-宝塔建站

文章目录 1.华为云云耀云服务器L实例2.选择配置与购买2.1 华为云云耀云服务器L实例-套餐配置详情 3.宝塔镜像的使用3.1 重置实例的密码3.2 MacOS环境登录服务器3.2.1 查看内存使用情况 3.3 进入宝塔面板3.3.1 在安全组开放端口3.3.2 网站效果 1.华为云云耀云服务器L实例 云耀云…

毛玻璃态登录表单

效果展示 页面结构组成 通过上述的效果展示可以看出如下几个效果 底部背景有三个色块并且效果是毛玻璃效果登录表单是毛玻璃效果登录表单的周围的小方块也是有毛玻璃效果并且与登录表单有层次效果 CSS3 知识点 filter 属性backdrop-filter 属性绝对定位属性动画属性 底部背…

案例突破——再探策略模式

再探设计模式 一、背景介绍二、 思路方案三、过程1. 策略模式基本概念2. 策略模式类图3. 策略模式基本代码策略类抽象策略类Context类客户端 4. 策略模式还可以进行优化的地方5. 对策略模式的优化(配置文件反射) 四、总结五、升华 一、背景介绍 在做项目…

使用Qt验证RGB格式

下面我们用不同的颜色来绘制一块矩形区域,来对比学习RGB颜色。 一片漆黑的黑色 黑色在RGB中是三个颜色分量都是0。也就是没有颜色。 下面我们绘制一个水平100个像素,垂直200个像素的矩形区域,颜色设置为黑色。 #ifndef MAINWINDOW_H #def…

Lua如何调用C程序库

在Lua中加载和使用C库需要使用Lua的C API。以下是一个简单的示例&#xff1a; 首先&#xff0c;让我们创建一个C库。在C中&#xff0c;我们可以创建一个文件&#xff0c;如“mylib.c”&#xff0c;包含以下代码&#xff1a; #include <stdio.h> int add(int a, int b) …

【C++】class的设计与使用(九)自定义函数对象(function object)

函数对象 一种提供有函数调用运算符的类。 当编译器遇到了一个函数调用&#xff0c;比如lt(ival);,lt可能是个函数名、函数指针、提供了函数调用运算符的的函数对象&#xff1b; 如果lt是个类对象&#xff0c;那么编译器会在内部将此语句转换为lt.operator(ival); 函数调用运…

Android Jetpack组件架构:ViewModel的原理

Android Jetpack组件架构&#xff1a;ViewModel的原理 导言 本篇文章是关于介绍ViewModel的&#xff0c;由于ViewModel的使用还是挺简单的&#xff0c;这里就不再介绍其的基本应用&#xff0c;我们主要来分析ViewModel的原理。 ViewModel的生命周期 众所周知&#xff0c;一般…

软件设计师_操作系统基本原理_学习笔记

文章目录 2.1 操作系统概述2.2 进程2.2.1 进程状态转换图2.2.2 前趋图2.2.3 进程的同步与互斥2.2.4 PV操作2.2.5 死锁 2.3 存储管理2.3.1 分区存储管理 2.1 操作系统概述 2.2 进程 2.2.1 进程状态转换图 2.2.2 前趋图 哪些任务可以并行&#xff0c;哪些任务有先后关系&#xf…

二叉树的线索化(2种实现方式)

1.全局变量 typedef struct ThreadNode {ELemType data;struct ThreadNode *lchild, *rchild;int ltag, rtag; }ThreadNode, *ThreadTree;ThreadNode *pre NULL;1.1中序线索化 void CreateInThread(ThreadTree T) {pre NULL;if(T ! NULL) {InThread(T);if(pre -> rchild…

VS+Qt+C++ GDAL读取tif图像数据显示

程序示例精选 VSQtC GDAL读取tif图像数据显示 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《VSQtC GDAL读取tif图像数据显示》编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;…

Egg使用jwt拦截jtoken验证

安装 npm install egg-jwt注册插件 在config文件夹子下 plugin,js下 use strict;module.exports {//mysqlmysql: {enable: true,package: egg-mysql},//jwtjwt: {enable: true,package: egg-jwt} };使用中间件 在app文件下创建 middleware 文件夹 在middleware 文件下创建…

睿趣科技:新手抖音开店卖什么产品好

抖音已经成为了一款年轻人热爱的社交媒体应用&#xff0c;同时也成为了一种全新的电商平台。对于新手来说&#xff0c;抖音开店卖什么产品是一个备受关注的问题。在这篇文章中&#xff0c;我们将探讨一些适合新手的产品选择&#xff0c;帮助他们在抖音上开店获得成功。 流行时尚…

毛玻璃态卡片悬停效果

效果展示 页面结构组成 页面的组成部分主要是卡片。其中卡片的组成部分主要是包括了图片和详情。 卡片的动效是鼠标悬停在卡片上时&#xff0c;图片会移动到左侧&#xff0c;并且图片是毛玻璃效果。所以我们在布局的时候图片会采用绝对布局。而详情则是基础布局。 CSS3 知识…

【智能家居项目】裸机版本——项目介绍 | 输入子系统(按键) | 单元测试

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《智能家居项目》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 &#x1f3c0;项目简介&#x1f3c0;输入子系统(按键)⚽应用层⚽设备层⚽ 内核层抽象层⚽…