聊聊并发编程——并发容器和阻塞队列

目录

一.ConcurrentHashMap

1.为什么要使用ConcurrentHashMap?

2.ConcurrentHashMap的类图

3.ConcurrentHashMap的结构图

二.阻塞队列

Java中的7个阻塞队列

ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。

LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。可以指定容量也可以无界。

PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。

DelayQueue:一个使用优先级队列实现的无界阻塞队列。 用于按照指定延迟时间对元素进行排序的阻塞队列。

SynchronousQueue:一个不存储元素的阻塞队列。常用于线程间的手递手传递。

LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。


一.ConcurrentHashMap

1.为什么要使用ConcurrentHashMap?
  • 不安全的HashMap

    Java 中的 HashMap 是非线程安全的,这意味着如果多个线程同时访问和修改同一个 HashMap 实例,可能会导致不一致的结果或抛出异常。以下是一个示例代码,展示了 HashMap 的线程不安全行为:

public static void main(String[] args) {// 创建一个 HashMapMap<Integer, String> map = new HashMap<>();// 创建一个线程池ExecutorService executorService = Executors.newFixedThreadPool(2);// 向 HashMap 中添加键值对的任务Runnable task = () -> {for (int i = 0; i < 1000; i++) {map.put(i, "Value " + i);}};// 启动两个线程同时执行添加任务executorService.submit(task);executorService.submit(task);// 等待线程池执行完毕executorService.shutdown();// 等待一段时间以确保线程池完成try {Thread.sleep(2000);} catch (InterruptedException e) {e.printStackTrace();}// 输出 HashMap 的大小System.out.println("HashMap size: " + map.size());}

在上述示例中,我们创建了一个包含两个线程的线程池,并让它们同时向同一个 HashMap 实例中添加键值对。由于 HashMap 不是线程安全的,这样的并发写入操作可能导致不一致的结果。在某些情况下,可能会抛出 ConcurrentModificationException 异常。

  • 效率低下的HashTable

    HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable 的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同 步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方 法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。

  • ConcurrentHashMap的锁分段技术可有效提升并发访问率

    HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的 线程都必须竞争同一把锁。

    ConcurrentHashMap所使用的锁分段技术。首先将数据分成一段一段地存 储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

2.ConcurrentHashMap的类图

3.ConcurrentHashMap的结构图

二.阻塞队列

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。

  • 支持阻塞的插入方法:当队列满时,会阻塞插入元素的线程,直到队列不满。

  • 支持阻塞的移除方法:当队列为空时,获取元素的线程会等待队列变为非空。

阻塞队列常用于生产者和消费者场景。生产者就是添加元素的线程,消费者就是获取元素的线程,阻塞队列就是生产者存放元素、消费者获取元素的容器。插入和移除操作的4中处理方式:

方法/处理方式抛出异常返回特殊值一直阻塞超时退出
插入方法add(e)offer(e)put(e)offer(e,time,unit)
移除方法remove()poll()take()poll(time,unit)
检查方法element()peek()不可用不可用
  • 抛出异常:当队列满了,再插入元素时,会抛出IllegalStateException(“Queue full”)异常。当队列为空,再获取元素,会抛出NoSuchElementException异常。

  • 返回特殊值:当队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列去除元素,如果不存在则返回null。

  • 一直阻塞:当队列满时,往队列put元素,队列会一直阻塞添加元素的线程,知道队列可用或者响应中断退出。当队列为空时,如果从队列中take元素,队列会阻塞获取元素的线程,知道队列不为空。

  • 超时退出:当队列满时,如果插入元素,队列会阻塞插入元素的线程一段时间,超过了指定时间,线程就会退出。

Java中的7个阻塞队列

如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永 远不会被阻塞,而且使用offer方法时,该方法永远返回true。

  • ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
    public class ArrayBlockingQueueExample {public static void main(String[] args) throws InterruptedException {ArrayBlockingQueue<Integer> arrayBlockingQueue = new ArrayBlockingQueue(5);
    ​// 生产者Thread produce = new Thread(()->{try {for (int i = 0; i < 10; i++) {arrayBlockingQueue.put(i);System.out.println("produced:" + i);}} catch (InterruptedException e) {e.printStackTrace();}});
    ​// 消费者Thread consume = new Thread(()->{try {while (true) {int i = arrayBlockingQueue.take();System.out.println("consumed" + i);}} catch (InterruptedException e) {e.printStackTrace();}});
    ​produce.start();consume.start();
    ​Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }

  • LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。可以指定容量也可以无界。
    public class LinkedBlockingQueueExample {public static void main(String[] args) throws InterruptedException {LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue(5);
    ​// 同上,创建生产者和消费者线程并启动
    ​// 主线程等待,中断生产者和消费者Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }
  • PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
    public class PriorityBlockingQueueExample {public static void main(String[] args) throws InterruptedException {PriorityBlockingQueue<Integer> queue = new PriorityBlockingQueue<>();
    ​// 同上,创建生产者和消费者线程并启动
    ​// 主线程等待,中断生产者和消费者Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。 用于按照指定延迟时间对元素进行排序的阻塞队列。
    public class DelayQueueExample {public static void main(String[] args) throws InterruptedException {DelayQueue<DelayedElement > queue = new DelayQueue<DelayedElement >();
    ​// 创建消费者线程Thread consume = new Thread(() ->{try {while (true) {DelayedElement element = queue.take();System.out.println("consume:" + element.getValue());}} catch (InterruptedException e) {e.printStackTrace();}});consume.start();
    ​// 生产者添加元素queue.put(new DelayedElement("value 5", 1, TimeUnit.SECONDS));queue.put(new DelayedElement("value 4", 2, TimeUnit.SECONDS));queue.put(new DelayedElement("value 3", 3, TimeUnit.SECONDS));queue.put(new DelayedElement("value 2", 4, TimeUnit.SECONDS));queue.put(new DelayedElement("value 1", 5, TimeUnit.SECONDS));
    ​Thread.sleep(10000);
    ​consume.interrupt();}
    ​static class DelayedElement implements Delayed {private String value;private long delayTime;
    ​public String getValue() {return value;}
    ​public DelayedElement(String value, long delayTime, TimeUnit timeUnit) {this.value = value;this.delayTime = System.currentTimeMillis() + timeUnit.toMillis(delayTime);}
    ​@Overridepublic long getDelay(TimeUnit unit) {return delayTime - System.currentTimeMillis();}
    ​@Overridepublic int compareTo(Delayed o) {return Long.compare(this.delayTime, ((DelayedElement) o).delayTime);}}
    }
  • SynchronousQueue:一个不存储元素的阻塞队列。常用于线程间的手递手传递。
    public class SynchronousQueueExample {public static void main(String[] args) throws InterruptedException {SynchronousQueue<Integer> queue = new SynchronousQueue<>();// 同上,创建生产者和消费者线程并启动
    ​// 主线程等待,中断生产者和消费者Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }   
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。

    public class LinkedTransferQueueExample {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<Integer> queue = new LinkedTransferQueue<>();
    ​// 同上,创建生产者和消费者线程并启动
    ​// 主线程等待,中断生产者和消费者Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
    public class LinkedBlockingDequeExample {public static void main(String[] args) throws InterruptedException {LinkedBlockingDeque<Integer> deque = new LinkedBlockingDeque<>();
    ​// 同上,创建生产者和消费者线程并启动
    ​// 主线程等待,中断生产者和消费者Thread.sleep(2000);produce.interrupt();consume.interrupt();}
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91498.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA 图像缩放 千兆网 UDP 网络视频传输,基于RTL8211 PHY实现,提供工程和QT上位机源码加技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐UDP视频传输--无缩放FPGA图像缩放方案我这里已有的以太网方案 3、设计思路框架视频源选择ADV7611 解码芯片配置及采集动态彩条跨时钟FIFO图像缩放模块详解设计框图代码框图2种插值算法的整合与选择 UDP协议栈UDP视频数据组包U…

Flink中的状态一致性

1.概念 一致性其实就是结果的正确性。对于分布式系统而言&#xff0c;从不同节点读取时总能得到相同的值&#xff1b;而对于事务而言&#xff0c;是要求提交更新操作后&#xff0c;能够读取到新的数据。 有状态的流处理&#xff0c;内部每个算子任务都可以有自己的状态。对于流…

Source Insight 工具栏图标功能介绍

这篇文章并不介绍 Source Insight 的具体使用方法&#xff0c;这类教程网上有很多&#xff0c;这里只分析 Souce Insight 工具栏图标的功能。 文章目录 Source Insight 简介Souce Insight 工具栏文件操作新建&#xff08;CtrlN&#xff09;打开&#xff08;CtrlO&#xff09;保…

Java 实现遍历一个文件夹,文件夹有100万数据,获取到修改时间在2天之内的数据

目录 1 需求2 实现1&#xff08;第一种方法&#xff09;2 实现2 &#xff08;推荐使用这个&#xff0c;快&#xff09;3 实现3&#xff08;推荐&#xff09; 1 需求 现在有一个文件夹&#xff0c;里面会一直存数据&#xff0c;动态的存数据&#xff0c;之后可能会达到100万&am…

【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)

文章目录 0. 前言1. Cifar10数据集1.1 Cifar10数据集下载1.2 Cifar10数据集解析 2. LeNet5网络2.1 LeNet5的网络结构2.2 基于PyTorch的LeNet5网络编码 3. LeNet5网络训练及输出验证3.1 LeNet5网络训练3.2 LeNet5网络验证 4. 完整代码4.1 训练代码4.1 验证代码 0. 前言 按照国际…

紫光同创FPGA图像视频采集系统,基于OV7725实现,提供工程源码和技术支持

目录 1、前言免责声明 2、设计思路框架视频源选择OV7725摄像头配置及采集动态彩条HDMA图像缓存输入输出视频HDMA缓冲FIFOHDMA控制模块HDMI输出 3、PDS工程详解4、上板调试验证并演示准备工作静态演示动态演示 5、福利&#xff1a;工程源码获取 紫光同创FPGA图像视频采集系统&am…

mysql面试题7:MySQL事务原理是什么?MySQL事务的隔离级别有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL事务原理是什么? MySQL事务的原理是基于ACID(原子性、一致性、隔离性、持久性)特性来实现的,具体原理如下: Atomicity(原子性):事务…

给奶牛做直播之三

​一、前言 上一篇给牛奶做直播之二 主要讲用RTMP搭建点播服务器&#xff0c;整了半天直播还没上场&#xff0c;今天不讲太多理论的玩意&#xff0c;奶牛今天放假了也不出场&#xff0c;就由本人亲自上场来个直播首秀&#xff0c;见下图&#xff0c;如果有兴趣的话&#xff0…

YOLOV8-DET转ONNX和RKNN

目录 1. 前言 2.环境配置 (1) RK3588开发板Python环境 (2) PC转onnx和rknn的环境 3.PT模型转onnx 4. ONNX模型转RKNN 6.测试结果 1. 前言 yolov8就不介绍了&#xff0c;详细的请见YOLOV8详细对比&#xff0c;本文章注重实际的使用&#xff0c;从拿到yolov8的pt检测模型&…

施耐德电气:勾勒未来工业愿景,赋能中国市场

9月19日&#xff0c;第23届中国国际工业博览会&#xff08;简称“工博会”&#xff09;在上海隆重召开。作为全球能源管理和自动化领域的数字化转型专家&#xff0c;施耐德电气在工博会现场全方位展现了自身对未来工业的全新视野与深刻见解&#xff0c;不仅展示了其贯通企业设计…

字节一面:深拷贝浅拷贝的区别?如何实现一个深拷贝?

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;我们经常需要对后端返回的数据进行处理才能渲染到页面上&#xff0c;一般我们会讲数据进行拷贝&#xff0c;在副本对象里进行处理&#xff0c;以免玷污原始数据&#xff0c…

arduino - UNO-R3,mega2560-R3,NUCLEO-H723ZG的arduino引脚定义区别

文章目录 arduino - UNO-R3,mega2560-R3,NUCLEO-H723ZG的引脚定义区别概述笔记NUCLEO-H723ZGmega2560-R3UNO-R3经过比对, 这2个板子(NUCLEO-H723ZG, mega2560-R3)都是和UNO-R3的arduino引脚定义一样的.mega2560-r3和NUCLEO-H723ZG的区别补充arduino uno r3的纯数字IO和模拟IO作…

uniapp iOS离线打包——原生工程配置

uniapp iOS离线打包&#xff0c;如何配置项目工程&#xff1f; 文章目录 uniapp iOS离线打包&#xff0c;如何配置项目工程&#xff1f;工程配置效果图DebugRelease 配置工程配置 Appkey应用图标模块及三方SDK配置未配置模块错误配置模块TIP: App iOS 离线打包 前提&#xff1a…

Linux服务器安装Anaconda 配置远程jupyter lab使用虚拟环境

参考的博客&#xff1a; Linux服务器安装Anaconda 并配置远程jupyter lab anaconda配置远程访问jupyter&#xff0c;并创建虚拟环境 理解和创建&#xff1a;Anaconda、Jupyterlab、虚拟环境、Kernel 下边是正文了。 https://www.anaconda.com/download是官网网址&#xff0c;可…

华为云云耀云服务器L实例评测|云耀云服务器L实例部署Linux管理面板mdserver-web

华为云云耀云服务器L实例评测&#xff5c;云耀云服务器L实例部署Linux管理面板mdserver-webl 一、云耀云服务器L实例介绍1.1 云耀云服务器L实例简介1.2 云耀云服务器L实例特点 二、mdserver-web介绍2.1 mdserver-web简介2.2 mdserver-web特点2.3 主要插件介绍 三、本次实践介绍…

机器学习之单层神经网络的训练:增量规则(Delta Rule)

文章目录 权重的调整单层神经网络使用delta规则的训练过程 神经网络以权值的形式存储信息,根据给定的信息来修改权值的系统方法称为学习规则。由于训练是神经网络系统地存储信息的唯一途径&#xff0c;因此学习规则是神经网络研究中的一个重要组成部分 权重的调整 &#xff08…

iPhone数据丢失怎么办?9 佳免费 iPhone 数据恢复软件可收藏

您是否知道有多种原因可能导致 iPhone 上存储的数据永久丢失&#xff1f;然而&#xff0c;使用一些最好的免费 iPhone 数据恢复软件&#xff0c;您仍然可以恢复它。 由于我们几乎总是保存手机上的所有内容&#xff08;从联系人到媒体文件&#xff09;&#xff0c;因此 iPhone …

CDH 6.3.2升级Flink到1.17.1版本

CDH&#xff1a;6.3.2 原来的Flink&#xff1a;1.12 要升级的Flink&#xff1a;1.17.1 操作系统&#xff1a;CentOS Linux 7 一、Flink1.17编译 build.sh文件&#xff1a; #!/bin/bash set -x set -e set -vFLINK_URLsed /^FLINK_URL/!d;s/.*// flink-parcel.properties FLI…

龙迅LT9611UXC 2PORT MIPICSI/DSI转HDMI(2.0)转换器+音频,内置MCU

龙迅LT9611UXC 1.描述&#xff1a; LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单 端口或双端口&#xff0c;1高速时钟通道和1~4高速数据通道&#xff0c;最大2Gbps/通道&#xff0c;可支持高达16Gbps的总带 宽。LT9611UXC支持突发…

智算创新,美格智能助力智慧支付加速发展

9月21日&#xff0c;以“智算引领创新未来”为主题的紫光展锐2023泛物联网终端生态论坛在深圳举行。作为紫光展锐重要战略合作伙伴&#xff0c;美格智能标准模组产品线总经理郭强华、高级产品总监刘伟鹏受邀出席论坛。美格智能基于紫光展锐5G、4G、智能SoC、Cat.1 bis等芯片平台…