一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体

目录

 前言

1、结构体

1.1、结构体类型的声明

1.2、特殊的结构体类型声明

1.3、结构体的自引用

1.4、结构体的定义和初始化

1.5、结构体成员变量的调用

1.6、结构体内存对齐 

1.6.1、offsetof

1.6.2、结构体大小的计算

1.6.3、为什么存在内存对齐? 

1.7、 修改默认对齐数

1.8、结构体传参

2、位段 

2.1、什么是位段

2.2、位段的内存分配

2.3、位段的跨平台问题

2.4、位段的应用 

3、枚举

3.1、枚举类型的定义

3.2、枚举的优点 

4、联合体(共用体)

4.1、联合类型的定义

4.2、联合体的特点

4.3、联合大小的计算

 前言

C语言的内置类型有:char、short、int、long、long long、float、double。

而这些内置类型不能够解决所有问题,生活中会存在一些复杂对象。

比如描述一个人,名字、性别、年龄、身高、体重.......

描述一本书,书名、作者、出版社.......

由于会存在复杂对象,因此C语言就支持了自定义类型,这就是这篇博客即将讲到的结构体、位段、枚举、联合体(共用体)。

1、结构体

        结构体是一种用户自定义的数据类型,用来将多个关联的数据项组合到一起,形成一个完整的数据集合。

        数组是一组相同类型元素的集合,而结构体可以包含不同类型的数据,例如整型、字符型、浮点型、数组、指针等等。结构体中的每个数据被称为成员变量

1.1、结构体类型的声明

  • 结构体关键字struct
  • 自定义类型名tag
  • 成员列表member-list
  • 结构体变量名variable-list
struct tag
{member-list;
}variable-list;

例如描述一个学生: 

struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}s1, s2, s3;//分号不能丢 s1,s2,s3是三个结构体变量,为全局变量int main()
{struct Stu s4, s5, s6; //s4,s5,s6是三个结构体变量,为局部变量return 0;
}

1.2、特殊的结构体类型声明

匿名结构体类型在定义时没有自定义类型名,并且在定义时就创建了结构体变量(s1)。

特点:因为没有自定义类型名,无法在以后通过自定义类型名进行创建,所以只能在定义时创建结构体变量。

struct 
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}s1;//分号不能丢

【易错提醒】 

 下面代码是否可行?

struct 
{char name[20];int age;char sex[5];char id[20];
}s1;struct
{char name[20];int age;char sex[5];char id[20];
}* p;int main()
{p = &s1;  //是否可行?return 0;
}

【答案 】

不可行, 在编译器看来,虽然两个结构体的成员变量是一样的,但是仍然会认为是两个结构体类型,因此编译器会报警告的。

1.3、结构体的自引用

在结构体中包含一个类型为该结构体本身的成员可以吗?

struct Node
{int data;struct Node next;
};

其实可以换一种思路:如果可以直接在结构体内包含本身,那么该结构体大小一定是可以用sizeof()计算的,因为如果可行的话就必然会存储在内存中,而存储在内存中的话又必然会有大小。相反如果无法计算大小,就证明该自引用方式不行。

那么当我们运行sizeof计算该结构体大小时候会发现编译器报错了,即证明该自引用方式是错误的。

【正确的结构体自引用】 

因为地址(指针)的大小是确定的,所以可以传递指针来实现结构体的自引用。

struct Node
{int data;struct Node* next; //结构体指针
};int main()
{printf("%d\n", sizeof(struct Node));return 0;
}

1.4、结构体的定义和初始化

struct Point
{int x;int y;
}p1;
//声明类型的同时定义变量p1
struct Point p2;
//定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = { 1, 2 };struct Stu    //类型声明
{char name[15];//名字int age;  //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化struct Node
{int data;struct Point p;struct Node* next;
}n1 = { 10, {4,5}, NULL };
//结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

1.5、结构体成员变量的调用

  • 结构体变量名.成员变量名
  • 结构体指针->成员变量名

1.6、结构体内存对齐 

  • 我们已经掌握了结构体的基本使用了。
  • 现在我们深入讨论一个问题:计算结构体的大小。
  • 这也是一个特别热门的考点: 结构体内存对齐

如果两个结构体的成员变量都一致,那么他们的大小会一样吗?

struct S1
{char c1;int i;char c2;
};struct S2
{char c1;char c2;int i;
};int main()
{printf("%d\n", sizeof(struct S1));   //结构体大小为多少?printf("%d\n", sizeof(struct S2));   //结构体大小为多少?return 0;
}

【运行结果】 

出乎意料的是,S1的大小是12,而S2的大小是8,它们的大小啊是不一致的,这是为什么呢?下面我们介绍一个宏offsetof,用这个宏来探究什么导致了S1和S2大小不一。

1.6.1、offsetof

宏offsetof用于计算结构体成员相较于起始位置的偏移量,返回的就是偏移量。

【计算S1】

首先c1、c2占一个字节,i占四个字节。然后用offsetof计算出偏移量为0、4、8。

而S1总大小又为12,那么将c1、i、c2按照偏移量存入内存中后可以观察到,如果S1为12,那么将有6个字节的空间被浪费(红色区域),这是为什么呢?

【计算S2】

 S2计算的大小是8,那么将成员变量按照偏移量存入内存中后,可以观察到被浪费了2个字节的空间(红色区域),为什么会出现浪费的空间,而且浪费的空间还不一样呢?下面将为大家讲解结构体内存对齐。

1.6.2、结构体大小的计算

首先得掌握结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
  • 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
  • VS中默认的值为8
  • Linux中没有默认对齐数,对齐数就是成员自身的大小。

     3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

     4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

那么当我们知道了对齐数这个东西之后,我们就来试着自己计算一下s1和s2的大小。 

 【手动计算S1】

  • 第一个成员c1直接放在0偏移处。
  • i的自身大小为4,vs默认对齐数为8,较小值就为4,因此要放到4的整数倍的位置上,即跳过(浪费)3个字节放在4偏移处,占4个字节。
  • c2自身大小为1,vs默认对齐数为8,较小值就为1,因此要放到1的整数倍的位置上,任何数都是1的整数倍,因此直接放在i后面就可以了。
  • 此时还没结束结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。c1对齐数1,i对齐数4,c2对齐数1,因此最大对齐数为4,此时大小为9,需要再浪费3个空间,使结构体总大小到达12成为4的倍数,这就完成了一次结构体的计算。

【手动计算S2】 

  • 第一个成员c1直接放在0偏移处。
  • c2自身大小为1,vs默认对齐数为8,较小值就为1,因此要放到1的整数倍的位置上,任何数都是1的整数倍,因此直接放在c1后面就可以了。
  • i的自身大小为4,vs默认对齐数为8,较小值就为4,因此要放到4的整数倍的位置上,即跳过(浪费)2个字节放在4偏移处,占4个字节。
  • 此时还没结束,结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。c1对齐数1,i对齐数4,c2对齐数1,因此最大对齐数为4。但是此时的大小刚好就为4的倍数,因此不需要在浪费其他空间了,结构体大小就为8。

1.6.3、为什么存在内存对齐? 

        当我们了解完结构体内存对齐之后,我们还有一个问题:什么会存在内存对齐呢 ?

大部分的参考资料中都涉及到两种原因

1. 平台原因(移植原因):
        不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常

2. 性能原因:
        数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总体来说: 

结构体的内存对齐是拿空间来换取时间的做法。

 

 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。例如上面作为例子使用的S1和S2,它们的成员一模一样,但是S1和S2所占空间的大小有了一些区别,就是因为S2将小的成员放在了一起。

struct S1
{char c1;int i;char c2;
};                      //结构体大小12struct S2
{char c1;char c2;int i;
};                      //结构体大小8

1.7、 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8struct S1
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认#pragma pack(1)//设置默认对齐数为1
struct S2
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认int main()
{	//输出的结果是什么?printf("%d\n", sizeof(struct S1));printf("%d\n", sizeof(struct S2));return 0;
}

 【运行结果】

这里非常好理解,对齐数设置为8的情况我们在上面已经计算过了,那么设置为1的时候就等于没有对齐了,因为任何数都是1的整数倍,所以直接就等于1+4+1 = 6。

1.8、结构体传参

 下面的 print1 和 print2 函数哪个好些?

struct S
{int data[1000];int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s);  //传结构体print2(&s); //传地址return 0;
}

【答案】

首选 print2 函数,因为函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

2、位段 

 位段的出现是为了节省空间的。

2.1、什么是位段

位段的“位”,就是二进制位的“位”。位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int 。在 C99之后,也可以是其他类型,但基本上也都是int、char这些整型家族的类型。
  2. 位段的成员名后边有一个冒号和一个数字
struct A
{int _a : 2;  //_a占用2个bit位的空间int _b : 5;  //_b占用5个bit位的空间int _c : 10; //_c占用10个bit位的空间int _d : 30; //_d占用30个bit位的空间
};int main()
{printf("%d\n", sizeof(struct A));return 0;
}//提示:1个字节等于8个bit位

 

正常情况下四个int类型开辟出来的大小为16个字节,但是如果使用上面的代码实现的话只用了8个字节,下面就来讲解一下位段的内存分配。

2.2、位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;int ret = sizeof(struct S);printf("%d\n", ret);return 0;
}

 【运行结果】Visual Studio 2022环境下测试结果

结果为3个字节。

疑问3+4+5+4 = 16bit位,1个字节等于8个bit位,为什么不是开辟2个字节呢?

我们可以在内存存放的值中找到答案。

图解可以得出结论:当空间不够存放下一个成员时,剩下的空间不会被使用,而是会开辟另外一个空间然后将内容存放到新开辟的空间中去,因此上述代码的结果才会是是3而不是2。

2.3、位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。)
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

2.4、位段的应用 

网络协议栈,网络底层传输数据。

在当今的互联网时代下,通过网络传输数据已经非常普遍了,那么大家有没有想过,当我们发送的一条短信,一条微信消息时,网络传输部分是怎样处理的,它是只传输了消息本身吗?当然不是,一条最简单的消息都要包含许多其他的数据,比如这条消息的发出时间,发送者的ip地址,发送对象的ip地址等等等等。一条消息包含了那么多数据,那么如果没有位段的出现,就会导致单条消息传输的体积过大,会导致网络负载过大,不利于我们的日常使用和服务器的数据存储。使用位段就能很好的压缩体积大小,使得消息更加小而轻便。

3、枚举

枚举,顾名思义就是一一列举,把可能值都一一列举。

比如我们现实生活中:

  • 一周的星期一到星期日是有限的7天,可以一一列举。
  • 性别有:男、女、保密,也可以一一列举。
  • 月份有12个月,也可以一一列举

3.1、枚举类型的定义

以下定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫枚举常量 。

enum Day//星期
{Mon,   //枚举的可能取值是默认从0开始的。Tues,Wed,Thur,Fri,Sat,Sun
};enum Sex//性别
{MALE,FEMALE,SECRET
};enum Color//颜色
{RED,GREEN,BLUE
};

这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。

例如: 

enum Color//颜色
{RED=1,GREEN=2,BLUE=4
};

3.2、枚举的优点 

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 防止了命名污染(封装)
  4. 便于调试
  5. 使用方便,一次可以定义多个常量

4、联合体(共用体)

4.1、联合类型的定义

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

union Un
{char c;int i;
};

4.2、联合体的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。同时因为共用一块内存空间,所以同一时间只能使用一个。

union Un
{char c;int i;
};int main()
{union Un un;printf("%d\n", sizeof(un));printf("%p\n", &(un));printf("%p\n", &(un.c));printf("%p\n", &(un.i));return 0;
}

 

4.3、联合大小的计算

  • 联合的大小至少是最大成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
union Un
{char c[5];  //大小为5,对齐数为1int i;      //大小为4,对齐数为4
};int main()
{printf("%zd\n", sizeof(union Un));return 0;
}

 【运行结果】

最大成员大小为5,但是最大对齐数是4,所以需要对齐到8。

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90556.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux账户组管理及权限练习

1.使用id命令查看root账户信息 [rootserver ~]# id root 用户id0(root) 组id0(root) 组0(root) 2.使用id命令查看自己的普通账户信息 [rootserver ~]# id kxy 用户id1000(kxy) 组id1000(kxy) 组1000(kxy),10(wheel) 3.新建账户test1&#xff0c;并查看账户信息&#xff1a; [ro…

BASH shell脚本篇3——字符串处理

这篇文章介绍下BASH shell中的字符串处理的相关命令。之前有介绍过shell的其它命令&#xff0c;请参考&#xff1a; BASH shell脚本篇1——基本命令 BASH shell脚本篇2——条件命令 Bash字符串也是一种数据类型&#xff0c;它用于表示文本而不是数字&#xff0c;它是一组可能…

No150.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

后台管理系统: 商品管理

商品管理之三级联动静态组件 先做俩个卡片组件&#xff0c;分开距离 三级联动很多地方都用到了它&#xff0c;我们可以封装成一个组件 注册为一个全局组件 <div><el-form :inline"true" class"demo-form-inline"><el-form-item label&qu…

1200*A. Flipping Game(前缀和)

解析&#xff1a; 100数据量&#xff0c;两层遍历每个区间&#xff0c;然后前缀和计算1的个数&#xff0c;维护最大值即可。 #include<bits/stdc.h> using namespace std; #define int long long const int N110; int n,a[N],res,sum[N]; signed main(){scanf("%ll…

目标检测:FROD: Robust Object Detection for Free

论文作者&#xff1a;Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae 作者单位&#xff1a;Sony AI; Kyung-Hee University 论文链接&#xff1a;http://arxiv.org/abs/2308.01888v1 内容简介&#xff1a; 1&#xff09;方向&#xff1a;目标检测 2&#xff09;…

3.6+铁死亡+WGCNA+机器学习

今天给同学们分享一篇3.6铁死亡WGCNA机器学习的生信文章“Identification of ferroptosis related biomarkers and immune infiltration in Parkinsons disease by integrated bioinformatic analysis”&#xff0c;这篇文章于2023年3月14日发表在BMC Med Genomics期刊上&#…

队列的使用以及模拟实现(C++版本)

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;强烈推荐优质专栏: &#x1f354;&#x1f35f;&#x1f32f;C的世界(持续更新中) &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;…

C运算符和控制语句

几乎每一个程序都需要进行运算&#xff0c;对数据进行加工处理&#xff0c;否则程序就没有意义了。要进行运算&#xff0c;就需规定可以使用的运算符。 C语言的运算符范围很宽&#xff0c;把除了控制语句和输人输出以外的几乎所有的基本操作都作为运算符处理。 运算符分类1 除…

likeadmin和fastapi的bug

以下内容写于2023年8月11日 bug 1 请求体 - 多个参数 - FastAPI (tiangolo.com)中“请求体中的单一值”处&#xff0c;选python3.6&#xff0c;接口示例代码是 from typing import Unionfrom fastapi import Body, FastAPI from pydantic import BaseModel from typing_exte…

Spring Boot中配置文件介绍及其使用教程

目录 一、配置文件介绍 二、配置简单数据 三、配置对象数据 四、配置集合数据 五、读取配置文件数据 六、占位符的使用 一、配置文件介绍 SpringBoot项目中&#xff0c;大部分配置都有默认值&#xff0c;但如果想替换默认配置的话&#xff0c;就可以使用application.prop…

从零手搓一个【消息队列】项目设计、需求分析、模块划分、目录结构

文章目录 一、需求分析1, 项目简介2, BrokerServer 核心概念3, BrokerServer 提供的核心 API4, 交换机类型5, 持久化存储6, 网络通信7, TCP 连接的复用8, 需求分析小结 二、模块划分三、目录结构 提示&#xff1a;是正在努力进步的小菜鸟一只&#xff0c;如有大佬发现文章欠佳之…

阿里云效自动构建python自动测试脚本

之前一直用的是jenkins自动构建自动化脚本&#xff0c;因为现在的公司统一在阿里云效的流水线上做代码的管理&#xff0c;构建&#xff0c;要求自动化测试也在上面自动构建&#xff0c;故而学习了一下。为自己做一个记录&#xff0c;也给有需要的朋友做一个参考。 1. 新建流水…

设计模式4、建造者模式 Builder

解释说明&#xff1a;将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示 UML 结构图&#xff1a; 抽象建造者&#xff08;Builder&#xff09;&#xff1a;这个接口规定要实现复杂对象的那些部分的创建&#xff0c;并不设计具体部件对象的创…

在MySQL中使用VARCHAR字段进行日期筛选

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

ROS2 从头开始​​:第6部分 - ROS2 中的 DDS,用于可靠的机器人通信

一、说明 在这篇文章中,我们将重点关注 ROS 2的通信栈DDS,其中这是介于管理节点通信与控制节点通信环节,是上位机决策体系与下位机的控制体系实现指令-执行-反馈的关键实现机制。 二、ROS工程的概念框架 现代机器人系统非常复杂,因为需要集成各种类型的传感器、执行器和其…

No148.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

MySQL到TiDB:Hive Metastore横向扩展之路

作者&#xff1a;vivo 互联网大数据团队 - Wang Zhiwen 本文介绍了vivo在大数据元数据服务横向扩展道路上的探索历程&#xff0c;由实际面临的问题出发&#xff0c;对当前主流的横向扩展方案进行了调研及对比测试&#xff0c;通过多方面对比数据择优选择TiDB方案。其次分享了整…

查看react内置webpack版本的方法

yarn list --pattern webpack npm ls --pattern webpack

Python3操作SQLite3创建表主键自增长|CRUD基本操作

Win11查看安装的Python路径及安装的库 Python PEP8 代码规范常见问题及解决方案 Python3操作MySQL8.XX创建表|CRUD基本操作 Python3操作SQLite3创建表主键自增长|CRUD基本操作 anaconda3最新版安装|使用详情|Error: Please select a valid Python interpreter Python函数绘…