【C++进阶(六)】STL大法--栈和队列深度剖析优先级队列适配器原理

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:C++从入门到精通⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习C++
  🔝🔝


在这里插入图片描述

栈和队列

  • 1. 前言
  • 2. 栈和队列的接口函数熟悉
  • 3. 适配器介绍
  • 4. 栈和队列的模拟实现
  • 5. deque的简单介绍
  • 6. 优先级队列深度剖析
  • 7. 优先级队列的模拟实现
  • 8. 总结以及拓展

1. 前言

和C语言学习期间的学习顺序一样
顺序表,链表过了就是栈和队列
但是栈和队列非常特殊,它的内部结构
并不是靠自己实现的,而是一种适配器模式

本章重点:

本篇文章着重讲解适配器原理
和栈,队列的接口函数熟悉以及模拟实现
适配器里有一个特殊容器:deque
最后讲解优先级队列相关知识和实现

在这里插入图片描述

在这里插入图片描述


2. 栈和队列的接口函数熟悉

栈的接口函数熟悉:

在这里插入图片描述

由于栈结构只能支持栈顶插入,栈顶pop
所以它的接口很少,这里就不多介绍了!

队列的接口函数熟悉:

在这里插入图片描述

队列只比栈多了一个接口:back
队列的front相当于栈的top

在了解了接口函数后,可以尝试做几个题巩固

  1. 最小栈
  2. 栈的压入,弹出序列
  3. 逆波兰表达式求值
  4. 用两个栈实现队列

3. 适配器介绍

先看栈和队列的类模板:

在这里插入图片描述

我们发现第二个模板参数是:Container
并且它还有缺省值为 deque<T>

这里就直接引出一个概念: 适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

一个比较经典的例子就是插头的适配器:

在这里插入图片描述

那么在数据结构栈中,这种适配器是什么呢?

很显然,在C语言阶段实现栈时,我们
使用的底层是顺序表来实现,也就是
把顺序表做了一层封装和限制,让它
的功能变得和栈一样,C++这里也是一样!

我们在实现栈时不用再去写一个顺序表
而是直接调用库中的vector!


4. 栈和队列的模拟实现

栈的模拟实现要复用其他数据结构
所以在定义模板时要定义两个!

template<class T, class Container = deque<T>>
class Stack
{//......
private:Container _con;
}

我们和库中的缺省值保持一致,使用deque
这个容器我们后面会有所解释!

这样使用栈非常的方便!因为此时的栈
就像"富二代"一样,不用写构造和析构函数
因为默认生成的构造或析构会去调用
内嵌类型的构造或析构帮助我们完成任务!

在此之后,只需要实现一些接口函数即可!

void push(const T& val)
{_con.push_back(val);
}void pop()
{_con.pop_back();
}T& top()//可读可写
{return _con.back();
}const T& top() const
{return _con.back();
}bool empty() const
{return _con.empty();
}size_t size() const
{return _con.size();
}

注:函数中的push_back或back等
函数接口是调用适配器中的!如vector中的

栈的结构实现完成,队列就交给你们了!


5. deque的简单介绍

deque也是一个STL库中的容器
先来看看它的介绍:

在这里插入图片描述

deque又被称为双端队列是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素,与list比较,空间利用率比较高

在这里插入图片描述

接下来看看它的接口函数:

在这里插入图片描述

deque既有头插头删也有尾插尾删
这是意料之中,它也支持方括号[]
其实对于deque的了解到这里就差不多了
下面的内容属于拓展了解,有兴趣的可以看看

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:

在这里插入图片描述
deque扩容是直接另外开辟一份空间
再让中控数组指向新开辟的空间
再将原先空间的内容拷贝至新空间

注意它有一个中控数组的概念!


6. 优先级队列深度剖析

优先级队列的英文是: priority_queue
它也是一个容量适配器,文档的大致翻译:

在这里插入图片描述
在这里插入图片描述

优先级队列默认是大堆!

在这里插入图片描述

并且它的底层适配器默认是vector

优先级队列默认有三个类模板,然而第三个
模板就是决定此优先级队列是大堆还是小堆
它叫仿函数,我们先不管它,下一篇文章回讲解
我们需要了解的是,默认的less是大堆
我们显示传参greater时是小堆!

优先级队列的接口函数熟悉:

在这里插入图片描述

注:如果你想使用小堆,就要将前两个
模板参数实例化后才能实例化第三个
当less变成greater时,就是小堆


7. 优先级队列的模拟实现

在学习仿函数之前,先实现无仿函数版本:

基本结构和框架:

template<class T, class Container = vector<T>>
class Priority_queue
{
public://成员函数
private:Container _con;//此容器可能是vector可能是deque
};

由于优先级队列是"富二代",所以
构造,析构和拷贝构造都可以忽略不写

优先级队列的插入和删除操作:

由于优先级队列实际上就是个堆
所以在插入,删除之后.都需要做一件事
那就是向上调整或向下调整!所以插入和
删除的关键其实就在于向上/下调整!

向上调整:

void AdjustUp(int* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] > a[parent]){swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

向下调整:

void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (a[child+1] < a[child] && child + 1 < n){child++;}if (a[child] < a[parent]){swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

这两个操作在学习堆时就已经实现过了,老朋友了

详情可看: 堆以及topk问题

优先级队列的插入和删除

void push(const T& val)//堆的插入
{_con.push_back(val);adjust_up(_con.size() - 1);
}void pop()//堆的删除
{std::swap(_con[0], _con[_con.size() - 1]);_con.pop_back();adjust_down(0);
}

插入和删除可谓是和堆的做法一模一样
其他的函数接口也是如此,这里就不多解读
我把优先级队列模拟实现的所有代码分享出来:

优先级队列模拟实现全部代码


8. 总结以及拓展

其实我们可以感受到,有了前面STL
容器的学习,现在学习栈和队列要轻松许多
不仅是模拟实现上可以复用以前的容器
连使用方法和函数接口都和之前一样
这就是C++STL的魅力所在!

拓展阅读:
对于deque我们还有很多未知的地方
比如它的扩容是怎样完成的?是否是缩容?
deque是如何支持随机访问的?deque的缺陷?

有兴趣的老铁可以阅读下面这篇文章:

deque深度剖析


🔎 下期预告:模板进阶以及仿函数 🔍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90370.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基础算法--KMP字符串

KMP 算法是一个快速查找匹配串的算法&#xff0c;它的作用其实就是本题问题&#xff1a;如何快速在「原字符串」中找到「匹配字符串」。 在朴素解法中&#xff0c;不考虑剪枝的话复杂度是 O(m∗n) 的&#xff0c;而 KMP 算法的复杂度为 O(mn)。 KMP 之所以能够在O(mn) 复杂度内…

leetCode 213. 打家劫舍 II 动态规划 房间连成环怎么偷呢?

213. 打家劫舍 II - 力扣&#xff08;LeetCode&#xff09; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#xff0c;相邻的房屋装…

如何定时备份使用Docker构建的MySQL容器中的数据库

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

PIE:1979-2018年中国气温数据产品(空间分辨率为0.1º)

简介 中国气温数据产品包含1979-2018年期间中国的近地表气温数据&#xff08;单位为摄氏度&#xff09;&#xff0c;时间分辨率为每日&#xff0c;空间分辨率为0.1。本产品集成了再分析数据&#xff08;ERA5、CMFD&#xff09;、遥感数据&#xff08;MODIS&#xff09;、原位数…

php eayswoole node axios crypto-js 实现大文件分片上传复盘

不啰嗦 直接上步骤 步骤1.开发环境配置 项目需要node.js 做前端支撑 官网下载地址&#xff1a; http://nodejs.cn/download/ 根据自己需要下载对应的版本,我下载的是windows系统64位的版本。 包下载好后 进行安装&#xff0c;安装步骤在此省略... 测试是否安装成功 …

蓝海彤翔亮相2023新疆网络文化节重点项目“新疆动漫节”

9月22日上午&#xff0c;2023新疆网络文化节重点项目“新疆动漫节”&#xff08;以下简称“2023新疆动漫节”&#xff09;在克拉玛依科学技术馆隆重开幕&#xff0c;蓝海彤翔作为国内知名的文化科技产业集团应邀参与此次活动&#xff0c;并在美好新疆e起向未来动漫展映区设置展…

C#生成自定义海报

安装包 SixLabors.ImageSharp.Drawing 2.0 需要的字体&#xff1a;宋体和微软雅黑 商用的需要授权如果商业使用可以使用方正书宋、方正黑体&#xff0c;他们可以免费商用 方正官网 代码 using SixLabors.Fonts; using SixLabors.ImageSharp; using SixLabors.ImageSharp.Draw…

使用SPY++查看窗口信息去排查客户端UI软件问题

目录 1、使用SPY查看窗口的信息 2、使用SPY查看某些软件UI窗口用什么UI组件实现的 2.1、查看海康视频监控客户端安装包程序 2.2、查看华为协同办公软件WeLink 2.3、查看字节协同办公软件飞书 2.4、查看最新版本的Chrome浏览器 2.5、查看小鱼易连视频会议客户端软件 2.6…

CIP或者EtherNET/IP中的PATH是什么含义?

目录 SegmentPATH举例 最近在学习EtherNET/IP&#xff0c;PATH不太明白&#xff0c;翻了翻规范&#xff0c;在这里记个笔记。下面的叙述可能是中英混合&#xff0c;有一些是规范中的原文我直接搬过来的。我翻译的不准确。 Segment PATH是CIP Segment中的一个分类。要了解PATH…

Dev C++安装与运行

参考: https://blog.csdn.net/Keven_11/article/details/126388791 https://www.cnblogs.com/-Wallace-/p/cpp-stl.html 2021年真题要求 2022年真题要求 河南省的考试环境 IDE环境 Dev C 安装 下载 安装 点击OK&#xff0c;选择我接受 修改安装路径为D盘d:\Program Fi…

MQTT协议是什么?快速了解MQTT协议在物联网中的应用

随着工业互联网的迅猛发展&#xff0c;工业设备数据采集和实时监控成为制造业提高生产效率和质量的重要手段。在物联网应用中&#xff0c;通信技术包括Wi-Fi、RFID、NFC、RS232、RS485、USB等&#xff0c;其中在物联网技术框架体系中所使用到的通讯协议主要有&#xff1a;AMQP、…

Django(21):使用Celery任务框架

目录 Celery介绍Celery安装Celery使用项目文件和配置启动Celery编写任务调用异步任务查看任务执行状态及结果 设置定时和周期性任务配置文件添加任务Django Admin添加周期性任务启动任务调度器beat Flower监控任务执行状态Celery高级用法与注意事项给任务设置最大重试次数不同任…

26663-2011 大型液压安全联轴器 课堂随笔

声明 本文是学习GB-T 26663-2011 大型液压安全联轴器. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了大型液压安全联轴器的分类、技术要求、试验方法及检验规则等。 本标准适用于联接两同轴线的传动轴系&#xff0c;可起到限制…

软考高级之系统架构师之软件需求工程

概述 一个完整的软件生存周期是以需求为出发点。软件需求是指用户对系统在功能、行为、性能、设计约束等方面的期望。 需求开发&#xff1a; 需求获取需求分析需求定义&#xff08;需求规格说明书&#xff09;需求验证 需求管理: 变更控制版本控制需求跟踪需求状态跟踪 需…

零基础Python经验体验代码检查工具

作者&#xff1a;yd_257945187 原文链接&#xff1a;零基础Python经验体验代码检查工具-云社区-华为云 1 开发小白自述 年初&#xff0c;我开始从java语言转战Python语言的开发&#xff0c;对于零基础python经验的人来说&#xff0c;要开发出高质量且安全性能高的Python 代码…

解决craco启动react项目卡死在Starting the development server的问题

现象&#xff1a; 原因&#xff1a;craco.config.ts配置文件有问题 经过排查发现Dev开发模式下不能有splitChunk的配置&#xff0c; 解决办法&#xff1a; 加一个生产模式的判断&#xff0c;开发模式不加载splitChunk的配置&#xff0c;仅在生产模式才加载 判断条件代码&#…

notepad++配置python2环境

&#xff08;1&#xff09;python2版本下载&#xff1a;Index of /ftp/python/2.7.8/https://www.python.org/ftp/python/2.7.8/ &#xff08;2&#xff09; 配置notepad环境 1.打开Notepad&#xff0c;点击“插件”-“插件管理器”&#xff0c;在“可用”选项卡中&#xff0c…

云安全之访问控制介绍

访问控制技术背景 信息系统自身的复杂性、网络的广泛可接入性等因素&#xff0c;系统面临日益增多的安全威胁&#xff0c;安全问题日益突出&#xff0c;其中一个重要的问题是如何有效地保护系统的资源不被窃取和破坏。 访问控制技术内容包括访问控制策略、访问控制模型、访问…

国庆周《Linux学习第二课》

Linux开篇指南针环境安装(第一课)-CSDN博客 Linux详细的环境安装介绍在上面 第一 环境准备过程 安装过程

Python绘图系统22:实现系统菜单

文章目录 文件菜单子部件开关 Python绘图系统&#xff1a; 前置源码&#xff1a; Python打造动态绘图系统&#x1f4c8;一 三维绘图系统 &#x1f4c8;二 多图绘制系统&#x1f4c8;三 坐 标 轴 定 制&#x1f4c8;四 定制绘图风格 &#x1f4c8;五 数据生成导入&#x1f4c8;…