个人网站怎么做/seo推广需要多少钱

个人网站怎么做,seo推广需要多少钱,腾讯企业邮箱电脑版登录入口,比较好的网页设计网站算法基础篇 前言 算法内容还有搜索,数据结构(进阶),动态规划和图论 数学那个的话大家也知道比较难,放在最后讲 这期包含的内容可以看目录 模拟那个算法的话就是题说什么写什么,就不再分入目录中了 注意事…

算法基础篇

前言

算法内容还有搜索,数据结构(进阶),动态规划和图论
数学那个的话大家也知道比较难,放在最后讲
这期包含的内容可以看目录
模拟那个算法的话就是题说什么写什么,就不再分入目录中了

注意事项:

1.多组测试时,一定要考虑需不需要清空数据

一般是能覆盖的话(没覆盖的部分不用就行了)不清空或者还能用就不清空

(权衡时间复杂度,清空是用时间换空间)

2.int类型的无穷大可以搞为 int inf = 0x3f3f3f3f

1.高精度

当数据的值特别大,各种类型都存不下的时候,要用高精度算法来加减乘除

步骤:

1.先用字符串读入这个数,然后用数组逆序存储该数的每一位

2.利用数组,模拟加减乘除运算的过程

高精度加法:(c= a+b,其字符串存在c[],a[],b[]中)例题:洛谷的 [P1601 A+B Problem(⾼精)]
la,lb是a,b的字符串长度
lc = max(la,lb)
for(int i = 0;i<lc;i++)
{c[i]=a[i]+b[i];//对应位相加c[i+1]=c[i]/10;//处理进位c[i]%=10;//处理余数
}
if(c[lc])lc++;//易忘,来让lc为c字符串的长度
这里字符串的长度不用数组求
读的时候先读成string,再用size()求字符串长度,最后for循环读到数组里(逆序存储)
高精度减法:(z = x - y)存储在z[],x[],y[](逆序存储)
例题: 洛谷P2142 ⾼精度减法
要让大的数减小的数才行(判断方法如下:)
1.位数不等,按照字符串的长度比较
2.位数相等,用字典序比较
bool cmp(string&x,string&y)
{
if(x.size()!=y.size()) return x.size()<y.size();//比长度return x<y//比字典序}if(cmp(x,y))
{swap(x,y);cout<<'-'; }高精度减法过程:(x大于y才行)
lz=max(lx,ly);for(int i = 0;i<lz;i++)z[i]+=x[i]-y[i];if(z[i]<0)
{z[i+1]-=1;//借位z[i]+=10;}
while(lz>1&&z[lz-1]==0)lz--;//处理前导0
高精度乘法:(c = a*b)(也要逆序存储)
例题:洛谷  P1303 A*B Problem
lc = la+lb
//无进位相乘
for(int i =0;i<la,i++)
{for(int j = 0,j<lb,j++){c[i+j] = a[i]*b[j];} }
//处理进位
for(int i = 0;i<lc,i++)
{c[i+1]+=c[i]/10;c[i]%=10;}
//处理前导0
while(lc>1&&c[lc-1]==0)lc--;
(高精度除低精度)
(数组也是逆着存的,即个位在a[0])
高精度除法(这个模板是正数的,并且数组不用逆序存储)(c=a/b)(0<b<10的9次方)
(如果要解决负数的,就先判断是不是就一个负数,是就打印个-,之后转换为此做)long long t = 0;//标记每次除完之后的余数
for(int i = la-1;i>=0;i--)
{
//计算当前的被除数t = t*10+a[i];c[i]=t/b;t%=b; }
//处理前导0
while(lc>1&&c[lc-1]==0)lc--;

2.枚举和二进制枚举

枚举其实就是暴力求解

使用时一般都会超时,此时要先根据题目的数据范围来判断暴力枚举能不能通过

不能的话就要使用后面的各种算法去优化(比如二分这些),还有就是寻找题目的各种性质去简化题目(eg:洛谷 P10449 费解的开关)

二进制枚举:
用一个数的二进制表示中的0/1表示两种状态,从而达到枚举各种情况
例题:力扣 子集
而且,把一个数的二进制存在数组中时,一般用反着存储会让过程变得简单常用于的题型:
抽象图都是矩阵,改变矩阵的值,产生效果达到要求,问有几种途径
eg: 洛谷 Even Parity

3.前缀和(一维和二维)

在使用前缀和数组时,下标最好从1开始

核心思想就是预处理(用空间代替时间),避免多次重复运算

一维前缀和:
例题:牛客网 【模板】前缀和
其实就是把前面的和加在一起二维前缀和:
例题:牛客网 【模板】⼆维前缀和
用二维数组解决
前缀和矩阵一般为
f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+a[i][j];

4.差分(一维和二维)

核心思想也是预处理,也是用空间替换时间

其实,前缀和与差分是一对互逆的运算

一维差分:
例题:牛客网 【模板】差分洛谷    P1496 ⽕烧⾚壁步骤:
1.预处理出来差分数组
f[i]表示当前元素和前一个元素的差值f[i]+=a[i];f[i+1]-=a[i];2.利用差分数组解决m次修改操作
修改操作是:原数组[L,R]区间全部加k这个操作
相当于在差分数组中,f[L]+=k;f[R+1]-=k;3.还原原始的数组
直接对差分数组做前缀和运算即可
f[i]=f[i-1]+f[i];注意事项:
差分数组使用的时候,所有的操作必须全部进行完毕后,才能还原出操作之后的数组如果操作和查询穿插在一起的话,不用差分数组,不然时间复杂度很高
eg:每操作若干次,就查询一个操作之后的结果,然回还会继续操作,继续查询
这种问题要用线段树
二维差分:
例题:牛客网 【模板】⼆维差分利用差分矩阵解决问题
作用:快速处理"将二维数组中,某一个子矩阵加上一个元素的"的操作
这个子矩阵的左上是[x1][y1],右上是[x2][y2]
与一维差分很不同的地方:
在于利用差分数组来解决m次修改
f[x1][y1]+=k;
f[x1][y2+1]-=k;
f[x2+1][y1]-=k;
f[x2+1][y2+1]+=k;
这里的前缀和的用法也是要注意的!(用的前面的二维前缀和)

5.双指针(也叫尺取法或滑动窗口)

两个指针不回退(回退没啥用)时,才能用滑动窗口法

滑动窗口的时间复杂度是O(n平方)

是先分析暴力解法(发现第一行那个),然后可以用滑动窗口法

滑动窗口步骤:
例题:洛谷  唯⼀的雪花 Unique Snowflakes
1.初始化:left right 哈希表(不一定每题都用的哈希表)
2.进窗口:right位置元素记录到统计次数的哈希表中
3.判断:当哈希表中right位置的值超过1次之后,窗口内子串不合法
4.出窗口:让left所指位置的元素在哈希表中的次数减1
5.更新结果:判断结束之后,窗口合法,此时更新窗口的大小
(在其他题时,这个更新结果不一定为这5步中的最后一步)

6.二分算法

如果逐个遍历会超时时,常用此

使用条件:要研究的问题具有二段性才行

二段性:按某种要求可以分为两部分(比如大于18岁和不大于18岁)

二分算法的时间复杂度是O(logN)

这里的模板就只用记两点:
1.while(l<r)
2.if/else成立所要执行的语句中出现-1的话(这个好判断),前面的mid就要用有+1那个
3.如果想要最后的>a,则if里面就填(f[mid]>a)
如果是有序数组中查找的话,直接用STL的lower_bound和upper_bound
这个的时间复杂度O(logN)
反之则要自己模拟实现模拟实现的细节问题:
a.while循环里面的判断如何写
b.求中点的方式选哪一种
c.二分结束之后,相遇点的情况
需要判断一下,循环结束之后,是否是我们想要的结果
二分答案:
其实跟二分查找很类似,只不过把对象改成了答案
应用场景:求最大值最小和最小值最大问题
例题:洛谷  P1873 [COCI 2011/2012 #5] EKO / 砍树

7.贪心

鼠目寸光,也就是想用局部最优找出全局最优

步骤:
1.把解决问题的过程分成若干步
2.解决每一步时,都选择"当前看起来最优的"解法
3."希望"得到全局的最优解
在竞赛时,如果根据贪心策略想出来的若干个边界情况都能过的话,就大概率没问题,不去证明了

8.倍增思想

它能够使线性的处理转化为对数级的处理,优化时间复杂度

例题:(一般只用于这俩个)
1.洛谷  P1226 【模板】快速幂LL qpow(LL a,LL b,LL p)//a的b次方对p取模{LL ret = 1;while(b)
{if(b&1)ret = ret*a%p;a = a*a%p;b>>=1; 
}return ret;//这个;易忘}
2.洛谷  P10446 64位整数乘法
//a乘b对p取模
LL qmul(LL a,LL b,LL p)
{LL sum = 0;
while(b){if(b&1) sum=(sum+a)%p;a = (a+a)%p;//倍增b>>=1;}return sum;}

9.离散化

应用场景:当题目中数据的范围很大,但是数据的总量不是很大,就可以用离散化的思想先预处理一下所有的数据

离散化模板:
排序+使用哈希表去重并且记录离散化之后的值
(有时还需要再加一个统计每个位置出现几次的数组去记录每个位置出现了几次)
离散化常要对模板进行修改
例题:洛谷  P1496 ⽕烧⾚壁
用到离散化时容易出现问题的地方(区分同种和异种)
同种被覆盖的范围的例题:洛谷  P1496 ⽕烧⾚壁异种被覆盖的范围的例题:洛谷  P3740 [HAOI2014] 贴海报
要在离散化区间[x,y]时,不仅考虑x,y这俩个值,还要把[x+1,y+1]也考虑进去。
可以让单个区间内部和区间与区间之间都出现空隙

10.递归

应用场景:搞类似二叉树和东西和有重复子问题并要dfs时常用
如果会多次重复已知计算的话,建议用递推,而不是递归
注意事项:
1.递归的出口一般写在开头的
2.尾和头处理的对就一般没问题
3.用的全局变量和局部变量的值是多久的要注意(这俩个不同)
4.递归里面的输出是从底到头搞的
5.一定要设法转化为重复子问题(利用传参的增多来实现通用化)

11.分治

就是把一个问题分为多个子问题解决

一般分为左-右-中间

应用场景:
1.解决逆序对
例题:洛谷  P1908 逆序对

‍12.其他

按照方向走的时候:
可以int d[x]={1,0,-1,0}int d[y]={0,1,0,-1}这样来表示二维上的东西可以上下左右走一格这样走
eg:洛谷的蛇形方阵
如果想要数从0开始变成从1开始的话:
可以在cin>>x之后就立马x++
eg:如果a和b的和固定,那就只用记录a的值 b的值到时候推就行了
这样可以节省存储空间
求中点用
mid = left+(right - left)/2
和 mid = left+(right - left+1)/2,避免溢出
做题时,常需要观察的性质有:
1.是不是改变顺序不影响结果
例题:洛谷  A-B 数对
取模运算技巧:
1.当计算过程中,只有"加法"和"乘法"时,想对结果取模的话,取模可以放在任意的位置
但是最后一定要有个取模
eg:(a*b*c*d)%p
和 (a%p*b*c%p*d)%p的结果一样
这个在防止超出范围时很好用
2.当计算过程中,存在"减法"时,取模结果可能是负数的,此时如果需要补正,就需要"模加模"
的技巧来补正--负的模给搞成正的那一个模
eg:写为((a-b)%p+p)%p
3.如果当计算过程中,存在"除法"时,取模是会造成结果错误的
需要用求逆元的方法
解决顶出元素且"不插入"新元素的问题:
int cnt[N];
//用于标记第i行还有多少个老元素没被顶出
让a[i][cnt[i]]每次都是第i行的最后一个元素
//顶出元素之后要i--,下标为0的不存东西

13.例题链接传送

洛谷的 [P1601 A+B Problem(⾼精)]
洛谷P2142 ⾼精度减法
洛谷 P1303 A*B Problem
洛谷 P1480 A/B Problem
力扣 子集
[牛客网 【模板】前缀和]
牛客网 【模板】⼆维前缀和
牛客网 【模板】差分
[洛谷 P1496 ⽕烧⾚壁]
牛客网 【模板】⼆维差分
洛谷 唯⼀的雪花 Unique Snowflakes
洛谷 P1873 [COCI 2011/2012 #5] EKO / 砍树
洛谷 P1226 【模板】快速幂
洛谷 P10446 64位整数乘法
洛谷 P3740 [HAOI2014] 贴海报
洛谷 P1908 逆序对

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/898842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++核心语法快速整理

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文主要为学过多门语言玩家快速入门C 没有基础的就放弃吧。 全部都是精华&#xff0c;看完能直接上手改别人的项目。 输出内容 std::代表了这里的cout使用的标准库&#xff0c;避免不同库中的相同命名导致混乱 …

如何让自动驾驶汽车“看清”世界?坐标映射与数据融合概述

在自动驾驶领域,多传感器融合技术是实现车辆环境感知和决策控制的关键。其中,坐标系映射和对应是多传感器融合的重要环节,它涉及到不同传感器数据在统一坐标系下的转换和匹配,以实现对车辆周围环境的准确感知。本文将介绍多传感器融合中坐标系映射和对应的数学基础和实际应…

移除idea External Liraries 中maven依赖包

问题背景 扩展包里面不停的出现已经在POM文件注释的包&#xff0c;其实是没有查询到根源位置。 在IDEA插件中搜索Maven Helper 点击pom.xml文件 会出现扩展插件 定位之后在pom中添加exclusions&#xff0c;如下代码 <dependency><groupId>com.disney.eva.framewo…

AI革命!蓝耘携手海螺AI视频,打造智能化视频新纪元

AI革命&#xff01;蓝耘携手海螺AI视频&#xff0c;打造智能化视频新纪元 前言 在这个信息爆炸的时代&#xff0c;视频已经成为我们获取信息、学习新知识的重要方式。而随着人工智能&#xff08;AI&#xff09;技术的快速发展&#xff0c;AI与视频内容的结合为我们带来了全新的…

ElasticSearch 可观测性最佳实践

ElasticSearch 概述 ElasticSearch 是一个开源的高扩展的分布式全文检索引擎&#xff0c;它可以近乎实时的存储、检索数据&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服务器&#xff0c;处理 PB 级别&#xff08;大数据时代&#xff09;的数据。ES 也使用 Java 开…

Excel处理控件Spire.XLS系列教程:C# 在 Excel 中添加或删除单元格边框

单元格边框是指在单元格或单元格区域周围添加的线条。它们可用于不同的目的&#xff0c;如分隔工作表中的部分、吸引读者注意重要的单元格或使工作表看起来更美观。本文将介绍如何使用 Spire.XLS for .NET 在 C# 中添加或删除 Excel 单元格边框。 安装 Spire.XLS for .NET E-…

【Java】TCP网络编程:从可靠传输到Socket实战

活动发起人小虚竹 想对你说&#xff1a; 这是一个以写作博客为目的的创作活动&#xff0c;旨在鼓励大学生博主们挖掘自己的创作潜能&#xff0c;展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴&#xff0c;那么&#xff0c;快来参加吧&#xff01…

html5炫酷的科技感3D文字效果实现详解

炫酷的科技感3D文字效果实现详解 这里写目录标题 炫酷的科技感3D文字效果实现详解项目概述核心技术实现1. 3D文字效果2. 故障艺术效果&#xff08;Glitch Effect&#xff09;3. 动态网格背景4. 扫描线效果5. 粒子效果 性能优化考虑技术难点与解决方案项目总结扩展优化方向 项目…

车道保持中车道线识别

需要让小车保持车道行驶&#xff0c;首先需要进行车道线识别。 也可参看论文&#xff08;上传到资源里&#xff09;&#xff1a;自动驾驶汽车车道检测与预测的技术解析-基于图像处理和Hough变换的方法 1 车道识别流程 想进行车道线识别&#xff0c;并且希望在图像中选择一个特…

英伟达有哪些支持AI绘画的 工程

英伟达在AI绘画领域布局广泛&#xff0c;其自研工具与第三方合作项目共同构建了完整的技术生态。以下是其核心支持AI绘画的工程及合作项目的详细介绍&#xff1a; 一、英伟达自研AI绘画工具 1. GauGAN系列 技术特点&#xff1a;基于生成对抗网络&#xff08;GAN&#xff09;&…

驱动开发的引入

1.引入 Linux内核的整体架构本就非常庞大&#xff0c;其包含的组件也非常多。而我们怎样把需要的部分都包含在内核中呢? 一种方法是把所有需要的功能都编译到Linux内核中。这会导致两个问题&#xff0c;一是生成的内核会很大&#xff0c;二是如果我们要在现有的内核中新增或删…

Android在kts中简单使用AIDL

Android在kts中简单使用AIDL AIDL相信做Android都有所了解&#xff0c;跨进程通信会经常使用&#xff0c;这里就不展开讲解原理跨进程通信的方式了&#xff0c;最近项目换成kts的方式&#xff0c;于是把aidl也换成了统一的方式&#xff0c;其中遇到了很多问题&#xff0c;这里…

物化视图详解:数据库性能优化的利器

物化视图&#xff08;Materialized View&#xff09;作为数据库性能优化的核心手段&#xff0c;通过预计算和存储查询结果&#xff0c;显著提升了复杂查询的效率。本文将深入剖析物化视图的工作原理、应用场景及最佳实践&#xff0c;帮助企业在合适的场景中充分发挥其性能优势。…

快速入手:Nacos融合SpringCloud成为注册配置中心

快速入手&#xff1a;Nacos融合SpringCloud成为注册配置中心 前言安装Nacos项目搭建添加配置启动类添加注解运行项目服务调用RestTemplate 模式FeignClient 模式 Gateway 网关 前言 Spring Cloud是一系列框架的集合&#xff0c;提供了微服务架构下的各种解决方案&#xff0c;如…

Python | 如何在Pandas中删除常量列

在数据分析中&#xff0c;经常会遇到数据集中始终具有常量值的列&#xff08;即&#xff0c;该列中的所有行包含相同的值&#xff09;。这样的常量列不提供有意义的信息&#xff0c;可以安全地删除而不影响分析。 如&#xff1a; 在本文中&#xff0c;我们将探索如何使用Pyth…

5.高频加热的原理与常用集成电路介绍

一、高频加热的类型 利用高频电源加热通常由两种方法&#xff1a;电介质加热&#xff08;被加热物体绝缘&#xff09;与感应加热&#xff08;被加热物体导电&#xff09;&#xff0c;详细解释如下&#xff1a; 电介质加热&#xff08;利用高频电压的高频电场导致物体自身分子摩…

【中文翻译】第9章-The Algorithmic Foundations of Differential Privacy

由于GitHub项目仅翻译到前5章&#xff0c;我们从第6章开始通过大语言模型翻译&#xff0c;并导出markdown格式。 大模型难免存在错漏&#xff0c;请读者指正。 教材原文地址&#xff1a;https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf 9 差分隐私与计算复杂度 到目…

【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理

搭建本地大模型GPT-NeoX:详细步骤及常见问题处理 GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。 1. 系统要求 1.1 硬件要求 1.2 软…

Unity跨平台构建快速回顾

知识点来源&#xff1a;人间自有韬哥在&#xff0c;豆包 目录 一、发布应用程序1. 修改发布必备设置1.1 打开设置面板1.2 修改公司名、游戏项目名、版本号和默认图标1.3 修改 Package Name 和 Minimum API Level 2. 发布应用程序2.1 配置 Build Settings2.2 选择发布选项2.3 构…

低配电脑畅玩《怪物猎人:荒野》,ToDesk云电脑优化从30帧到144帧?

《怪物猎人&#xff1a;荒野&#xff08;Monster Hunter Wilds&#xff09;》自2025年正式发售以来已取得相当亮眼的成绩&#xff0c;仅用三天时间便轻松突破800万销量&#xff0c;目前顺利蝉联周榜冠军&#xff1b;凭借着开放世界的宏大场景和丰富的狩猎玩法&#xff0c;该游戏…