如何将网站部署到服务器/域名服务器ip查询网站

如何将网站部署到服务器,域名服务器ip查询网站,特色直播app下载,深圳微信分销网站建设一、排序的基本概念 排序是计算机科学中一项重要的操作,它将一组数据元素按照特定的顺序(如升序或降序)重新排列。排序算法的性能通常通过时间复杂度和空间复杂度来衡量。在 Python 中,有内置的排序函数,同时也可以手…

一、排序的基本概念

排序是计算机科学中一项重要的操作,它将一组数据元素按照特定的顺序(如升序或降序)重新排列。排序算法的性能通常通过时间复杂度和空间复杂度来衡量。在 Python 中,有内置的排序函数,同时也可以手动实现各种排序算法。

二、Python 内置排序函数

1. sorted() 函数

sorted() 函数可以对任何可迭代对象进行排序,并返回一个新的已排序列表,原对象不会被修改。

python

# 对列表进行排序
numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = sorted(numbers)
print("使用 sorted() 排序后的列表:", sorted_numbers)# 对字符串进行排序
string = "python"
sorted_string = ''.join(sorted(string))
print("对字符串排序后的结果:", sorted_string)# 对字典按键排序
dictionary = {'c': 3, 'a': 1, 'b': 2}
sorted_dict_keys = sorted(dictionary.keys())
print("对字典按键排序后的结果:", sorted_dict_keys)

2. list.sort() 方法

list.sort() 方法是列表对象的一个方法,它会直接对原列表进行排序,不返回新的列表。

python

numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
numbers.sort()
print("使用 list.sort() 排序后的列表:", numbers)

3. 自定义排序规则

sorted() 和 list.sort() 都可以接受一个 key 参数,用于指定排序的规则。

python

# 按字符串长度排序
words = ["apple", "banana", "cherry", "date"]
sorted_words = sorted(words, key=len)
print("按字符串长度排序后的列表:", sorted_words)# 按自定义函数排序
students = [{"name": "Alice", "age": 20},{"name": "Bob", "age": 18},{"name": "Charlie", "age": 22}
]
sorted_students = sorted(students, key=lambda x: x["age"])
print("按年龄排序后的学生列表:", sorted_students)

三、常见排序算法的 Python 实现

1. 冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

python

def bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n - i - 1):if arr[j] > arr[j + 1]:arr[j], arr[j + 1] = arr[j + 1], arr[j]return arrnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = bubble_sort(numbers)
print("冒泡排序后的列表:", sorted_numbers)

2. 选择排序(Selection Sort)

选择排序是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

python

def selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i + 1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]return arrnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = selection_sort(numbers)
print("选择排序后的列表:", sorted_numbers)

3. 插入排序(Insertion Sort)

插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

python

def insertion_sort(arr):for i in range(1, len(arr)):key = arr[i]j = i - 1while j >= 0 and key < arr[j]:arr[j + 1] = arr[j]j -= 1arr[j + 1] = keyreturn arrnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = insertion_sort(numbers)
print("插入排序后的列表:", sorted_numbers)

4. 快速排序(Quick Sort)

快速排序是一种分治的排序算法。它选择一个基准值,将数组分为两部分,小于基准值的元素放在左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。

python

def quick_sort(arr):if len(arr) <= 1:return arrelse:pivot = arr[0]left = [x for x in arr[1:] if x <= pivot]right = [x for x in arr[1:] if x > pivot]return quick_sort(left) + [pivot] + quick_sort(right)numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = quick_sort(numbers)
print("快速排序后的列表:", sorted_numbers)

5. 归并排序(Merge Sort)

归并排序是一种分治算法,它将一个数组分成两个子数组,分别对这两个子数组进行排序,然后将排好序的子数组合并成一个最终的有序数组。

python

def merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left = merge_sort(arr[:mid])right = merge_sort(arr[mid:])return merge(left, right)def merge(left, right):result = []i = j = 0while i < len(left) and j < len(right):if left[i] < right[j]:result.append(left[i])i += 1else:result.append(right[j])j += 1result.extend(left[i:])result.extend(right[j:])return resultnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
sorted_numbers = merge_sort(numbers)
print("归并排序后的列表:", sorted_numbers)

四、排序算法复杂度分析

排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度稳定性
冒泡排序\(O(n^2)\)\(O(n^2)\)\(O(n)\)\(O(1)\)稳定
选择排序\(O(n^2)\)\(O(n^2)\)\(O(n^2)\)\(O(1)\)不稳定
插入排序\(O(n^2)\)\(O(n^2)\)\(O(n)\)\(O(1)\)稳定
快速排序\(O(n log n)\)\(O(n^2)\)\(O(n log n)\)\(O(log n)\)不稳定
归并排序\(O(n log n)\)\(O(n log n)\)\(O(n log n)\)\(O(n)\)稳定

五、总结

  • Python 内置的 sorted() 函数和 list.sort() 方法使用方便,性能也比较好,在大多数情况下可以直接使用。
  • 不同的排序算法有不同的时间复杂度和空间复杂度,在选择排序算法时需要根据具体的应用场景进行选择。例如,当数据量较小时,简单的排序算法(如冒泡排序、选择排序、插入排序)可能更合适;当数据量较大时,高效的排序算法(如快速排序、归并排序)则更有优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/898837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移除idea External Liraries 中maven依赖包

问题背景 扩展包里面不停的出现已经在POM文件注释的包&#xff0c;其实是没有查询到根源位置。 在IDEA插件中搜索Maven Helper 点击pom.xml文件 会出现扩展插件 定位之后在pom中添加exclusions&#xff0c;如下代码 <dependency><groupId>com.disney.eva.framewo…

AI革命!蓝耘携手海螺AI视频,打造智能化视频新纪元

AI革命&#xff01;蓝耘携手海螺AI视频&#xff0c;打造智能化视频新纪元 前言 在这个信息爆炸的时代&#xff0c;视频已经成为我们获取信息、学习新知识的重要方式。而随着人工智能&#xff08;AI&#xff09;技术的快速发展&#xff0c;AI与视频内容的结合为我们带来了全新的…

ElasticSearch 可观测性最佳实践

ElasticSearch 概述 ElasticSearch 是一个开源的高扩展的分布式全文检索引擎&#xff0c;它可以近乎实时的存储、检索数据&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服务器&#xff0c;处理 PB 级别&#xff08;大数据时代&#xff09;的数据。ES 也使用 Java 开…

Excel处理控件Spire.XLS系列教程:C# 在 Excel 中添加或删除单元格边框

单元格边框是指在单元格或单元格区域周围添加的线条。它们可用于不同的目的&#xff0c;如分隔工作表中的部分、吸引读者注意重要的单元格或使工作表看起来更美观。本文将介绍如何使用 Spire.XLS for .NET 在 C# 中添加或删除 Excel 单元格边框。 安装 Spire.XLS for .NET E-…

【Java】TCP网络编程:从可靠传输到Socket实战

活动发起人小虚竹 想对你说&#xff1a; 这是一个以写作博客为目的的创作活动&#xff0c;旨在鼓励大学生博主们挖掘自己的创作潜能&#xff0c;展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴&#xff0c;那么&#xff0c;快来参加吧&#xff01…

html5炫酷的科技感3D文字效果实现详解

炫酷的科技感3D文字效果实现详解 这里写目录标题 炫酷的科技感3D文字效果实现详解项目概述核心技术实现1. 3D文字效果2. 故障艺术效果&#xff08;Glitch Effect&#xff09;3. 动态网格背景4. 扫描线效果5. 粒子效果 性能优化考虑技术难点与解决方案项目总结扩展优化方向 项目…

车道保持中车道线识别

需要让小车保持车道行驶&#xff0c;首先需要进行车道线识别。 也可参看论文&#xff08;上传到资源里&#xff09;&#xff1a;自动驾驶汽车车道检测与预测的技术解析-基于图像处理和Hough变换的方法 1 车道识别流程 想进行车道线识别&#xff0c;并且希望在图像中选择一个特…

英伟达有哪些支持AI绘画的 工程

英伟达在AI绘画领域布局广泛&#xff0c;其自研工具与第三方合作项目共同构建了完整的技术生态。以下是其核心支持AI绘画的工程及合作项目的详细介绍&#xff1a; 一、英伟达自研AI绘画工具 1. GauGAN系列 技术特点&#xff1a;基于生成对抗网络&#xff08;GAN&#xff09;&…

驱动开发的引入

1.引入 Linux内核的整体架构本就非常庞大&#xff0c;其包含的组件也非常多。而我们怎样把需要的部分都包含在内核中呢? 一种方法是把所有需要的功能都编译到Linux内核中。这会导致两个问题&#xff0c;一是生成的内核会很大&#xff0c;二是如果我们要在现有的内核中新增或删…

Android在kts中简单使用AIDL

Android在kts中简单使用AIDL AIDL相信做Android都有所了解&#xff0c;跨进程通信会经常使用&#xff0c;这里就不展开讲解原理跨进程通信的方式了&#xff0c;最近项目换成kts的方式&#xff0c;于是把aidl也换成了统一的方式&#xff0c;其中遇到了很多问题&#xff0c;这里…

物化视图详解:数据库性能优化的利器

物化视图&#xff08;Materialized View&#xff09;作为数据库性能优化的核心手段&#xff0c;通过预计算和存储查询结果&#xff0c;显著提升了复杂查询的效率。本文将深入剖析物化视图的工作原理、应用场景及最佳实践&#xff0c;帮助企业在合适的场景中充分发挥其性能优势。…

快速入手:Nacos融合SpringCloud成为注册配置中心

快速入手&#xff1a;Nacos融合SpringCloud成为注册配置中心 前言安装Nacos项目搭建添加配置启动类添加注解运行项目服务调用RestTemplate 模式FeignClient 模式 Gateway 网关 前言 Spring Cloud是一系列框架的集合&#xff0c;提供了微服务架构下的各种解决方案&#xff0c;如…

Python | 如何在Pandas中删除常量列

在数据分析中&#xff0c;经常会遇到数据集中始终具有常量值的列&#xff08;即&#xff0c;该列中的所有行包含相同的值&#xff09;。这样的常量列不提供有意义的信息&#xff0c;可以安全地删除而不影响分析。 如&#xff1a; 在本文中&#xff0c;我们将探索如何使用Pyth…

5.高频加热的原理与常用集成电路介绍

一、高频加热的类型 利用高频电源加热通常由两种方法&#xff1a;电介质加热&#xff08;被加热物体绝缘&#xff09;与感应加热&#xff08;被加热物体导电&#xff09;&#xff0c;详细解释如下&#xff1a; 电介质加热&#xff08;利用高频电压的高频电场导致物体自身分子摩…

【中文翻译】第9章-The Algorithmic Foundations of Differential Privacy

由于GitHub项目仅翻译到前5章&#xff0c;我们从第6章开始通过大语言模型翻译&#xff0c;并导出markdown格式。 大模型难免存在错漏&#xff0c;请读者指正。 教材原文地址&#xff1a;https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf 9 差分隐私与计算复杂度 到目…

【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理

搭建本地大模型GPT-NeoX:详细步骤及常见问题处理 GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。 1. 系统要求 1.1 硬件要求 1.2 软…

Unity跨平台构建快速回顾

知识点来源&#xff1a;人间自有韬哥在&#xff0c;豆包 目录 一、发布应用程序1. 修改发布必备设置1.1 打开设置面板1.2 修改公司名、游戏项目名、版本号和默认图标1.3 修改 Package Name 和 Minimum API Level 2. 发布应用程序2.1 配置 Build Settings2.2 选择发布选项2.3 构…

低配电脑畅玩《怪物猎人:荒野》,ToDesk云电脑优化从30帧到144帧?

《怪物猎人&#xff1a;荒野&#xff08;Monster Hunter Wilds&#xff09;》自2025年正式发售以来已取得相当亮眼的成绩&#xff0c;仅用三天时间便轻松突破800万销量&#xff0c;目前顺利蝉联周榜冠军&#xff1b;凭借着开放世界的宏大场景和丰富的狩猎玩法&#xff0c;该游戏…

Flink基础简介和安装部署

文章目录 一、Flink基础简介1、什么是Flink2、Flink流处理特性3、Flink四大基石4、Flink中的角色 二、Flink集群搭建1、Local模式①上传Flink安装包②启动交互窗口③提交任务测试④访问WebUI页面查看④退出停止集群 一、Flink基础简介 1、什么是Flink Flink是⼀个分布式&#…

【2025】基于ssm+jsp的二手商城系统设计与实现(源码、万字文档、图文修改、调试答疑)

基于SSMJSP的二手商城系统设计与实现系统功能结构图&#xff1a; 课题背景 随着经济的发展和人们生活水平的提高&#xff0c;二手交易市场日益活跃。人们对于闲置物品的处理方式逐渐从传统的废品回收转变为通过二手交易平台进行再利用。这种交易模式不仅能够帮助用户节省开支&a…