探索useCallback、useMemo、useContext原理

您好,如果喜欢我的文章,可以关注我的公众号「量子前端」,将不定期关注推送前端好文~

useCallback & useMemo

介绍

useCallbackuseMemo原理类似,只是入参有所不同。

useCallback缓存的是回调函数,如果依赖项没有更新,就会使用缓存的回调函数;

useMemo缓存的是回调函数的return,也就是具体的值,类似Vue的计算属性,如果依赖项没有更新,就会使用缓存的return

官网有这样一段描述useCallback(fn, deps) 相当于 useMemo(() => fn, deps)

所以这里,只以useCallback为例进行分析。

mount阶段

mountCallback

mountCallback函数在初始化useCallback hook执行,原理比较简单,代码如下:

function mountCallback(callback, deps) {// 初始化hook结构var hook = mountWorkInProgressHook();// 使用者传进来的依赖数组var nextDeps = deps === undefined ? null : deps;// 以数组的形式将回调和依赖数组存储到对应fiber.memoizedState.hook.moeoizedStatehook.memoizedState = [callback, nextDeps];return callback;
}
updateCallback
function updateCallback(callback, deps) {var hook = updateWorkInProgressHook();var nextDeps = deps === undefined ? null : deps;var prevState = hook.memoizedState;if (prevState !== null) {if (nextDeps !== null) {var prevDeps = prevState[1];if (areHookInputsEqual(nextDeps, prevDeps)) {return prevState[0];}}}hook.memoizedState = [callback, nextDeps];return callback;
}

updateCallback就这几行代码,没有删减,代码意图也很简单,如果依赖数组deps没有变化,或者deps=[]的情况下,会返回之前缓存的回调函数,否则就更新对应fiber.memoizedState.hook.memoizedState并返回新的回调函数。

应用场景

就笔者的所见所闻,存在两种极端情况,一种开发者在开发时,不管什么函数,什么数据都喜欢使用useCallbackuseMemo进行一层包裹。还有一种开发者不管什么情况都不会考虑使用useCallbackuseMemo

不用说,这两种做法都是有问题的。第一种做法,还不知道是之所以会出现这样的问题,根本原因还是很多开发者并不明白这两个hook的原理和使用场景。

首先,我们要明确函数组件在每一次更新时,都会执行函数组件,函数组件内部的所有方法,所有值都会重新声明,重新计算。这两个hook的出现就是为了优化这种情况,避免不必要的浪费。而这两个hook的做法就是通过将函数或者值存储在对应的fiber.memoizedState.hook.memoizedState上,在下次更新时,根据依赖项是否变化来决定是否要用缓存值,还是新的传进来的值。

这时候可能有人疑惑既然都会更新,那我全部包裹起来有什么不好?笔者认为都进行包裹主要的问题是,如果一个函数足够简单,从新声明可能性能消耗会比包裹后存储在hook.memoizedState的消耗更小。

这里,笔者根据自己看源码的心得,列举下这两个hook的使用场景:

  1. 如果子组件比较复杂,可以考虑使用useCallback进行包裹;
  2. 如果函数组件中某个值需要大量的计算才能得出,可以考虑使用useMemo进行包裹;
  3. 如果某个函数是子组件的props,可以考虑使用useCallback进行包裹(配合React.memo使用);
  4. 自定义hooks中复杂逻辑可以考虑使用useCallbackuseMemo进行包裹;

总结

这两个hook原理还是很简单的,因为是系列文章,很多内容和前面文章都重复了,所以导致这篇都没啥能写的了。总结下原理:

这两个hook的做法就是通过将函数或者值存储在对应的fiber.memoizedState.hook.memoizedState上,在下次更新时,根据依赖项是否变化来决定是要用缓存值,还是新的传进来的值。

虽然useCallbackuseMemo是为了优化性能出现的,但是各位看官也不要盲目使用,毕竟这两个hook本身也会带来开销。

useContext

useContext可以帮助我们跨越组件层级直接传递变量,避免了在每一个层级手动的传递 props 属性,实现共享,要配合createContext使用。

createContext

createContext主要功能是创建一个context,提供ProviderConsumerProvider主要将context内容暴露出来,Consumer可以拿到对应contextProvider暴露的内容使用。

示例代码:

export const Context = createContext(null)<Context.Provider value='initialValue'><Context.Consumer>{(v) => {      return <h2>{v}</h2>}}  </Context.Consumer>
</Context.Provider>

Provider

<Context.Provider>在渲染时,beginWork阶段,会执行

pushProvider(workInProgress, newValue);

它会将Providerprop上的value字段存到context._currentValue中。

Consumer

<Context.Consumer>在渲染时,beginWork阶段,会执行

prepareToReadContext(workInProgress, renderLanes);
var newValue = readContext(context, newProps.unstable_observedBits);

通过上面代码可以拿到Providerprop上的value

值得注意的是, Consumer标签下包裹的必须是一个函数,如果不是函数会报错。 Consumer会将拿到的value作为函数的参数传入函数中去使用。如同上面示例代码中获取到的v

useContext

useContext需要将createContext创建的Context作为参数进行调用。

值得一提的是,前面讲的hook在初始化和更新时会有两套不同函数执行。但是在useContext只有一个,也就是useContext在初始化和更新时执行的是一套代码。

初始化 mount & 更新 update

useContextmount时主要会调用readContext函数:

function readContext(context, observedBits) {var contextItem = {context: context,  // 传入的contextobservedBits: resolvedObservedBits,  // 观察范围(默认全部update)next: null};lastContextDependency = contextItem;currentlyRenderingFiber.dependencies = {lanes: NoLanes,firstContext: contextItem,responders: null};} else {// Append a new context item.    lastContextDependency = lastContextDependency.next = contextItem;}return  context._currentValue ;
}

精简了下代码,可以看到,readContext会创建一个contextItem并以链表的结构记录在对应fiber.dependencies上,最后将Providerprop上的value返回。

总结

useContext的原理类似于观察者模式。Provider是被观察者, ConsumeruseContext是观察者。当Provider上的值发生变化, 观察者是可以观察到的,从而同步信息给到组件。

主要使用场景就是多层级组件值的传递,如果值较多可以考虑配合useReducer使用。

如果喜欢我的文章,可以关注我的公众号「量子前端」,将不定期关注推送前端好文~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/89773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MinGW、GCC、GNU和MSVC是什么?有什么区别?

在C和C开发中&#xff0c;常常会遇到MinGW、GCC、GNU和MSVC这些术语。本教程将向您解释它们的含义以及它们之间的区别&#xff0c;帮助您更好地理解这些常见的编译工具和开发环境。 MinGW&#xff08;Minimalist GNU for Windows&#xff09;&#xff1a; MinGW是一个开源的软件…

计算机里的神灵(SCIP)

计算机程序的构造和解释 我找到计算机里的神灵了&#xff0c;开心一刻 下面是从MIT官网下载的 SCIP求值器&#xff08;解释器&#xff09;的代码&#xff0c;这个官网是个宝藏库 还有其他视频课程和 SCIP的问题答案和可运行代码 链接&#xff1a;https://ocw.mit.edu/courses/6…

力扣-349.两个数组的交集

Idea 使用两个哈希集合&#xff0c;其中一个用来存储第一个数组&#xff0c;第二个来存储两个数组的交集&#xff0c;因为集合自带去重功能&#xff0c;因此最后用数组来接收就好了 AC Code class Solution { public:vector<int> intersection(vector<int>& n…

axios全局路由拦截的设置方法

一个项目中如果http请求发生了错误/异常&#xff0c;比如返回码4xx&#xff08;表示没有授权&#xff0c;登录过期等&#xff09;&#xff0c;我们希望能够在axios在第一时间就能拦截获取到&#xff0c;然后直接提示报错的错误信息&#xff0c;而不是在发起请求的地方&#xff…

Android gradle dependency tree change(依赖树变化)监控实现

文章目录 前言基本原理执行流程diff 报告不同分支 merge 过来的 diff 报告同个分支产生的 merge 报告同个分支提交的 diff 报告 具体实现原理我们需要监控怎样的 Dendenpency 变化怎样获取 dependency Treeproject.configurations 方式./gradlew dependenciesAsciiDependencyRe…

Git 详细安装教程(详解 Git 安装过程的每一个步骤

Git 详细安装教程&#xff08;详解 Git 安装过程的每一个步骤&#xff09; 该文章详细具体&#xff0c;值得收藏学习

什么是推挽电路?

推挽电路原理&#xff1a; 可以简单理解为推和拉&#xff1b; 此电路总共用到两个元器件&#xff0c;对应图中的Q1----NPN三极管&#xff0c;Q2----PNP三极管&#xff0c;两个电阻R1和R2起到限流的作用&#xff1b;两个三极管的中间对应信号的输出。 下面就举例说明是如何工作的…

uniapp 微信小程序之隐私协议开发

uniapp 微信小程序之隐私协议开发 官网通知&#xff1a;https://developers.weixin.qq.com/miniprogram/dev/framework/user-privacy/PrivacyAuthorize.html 1、配置 __usePrivacyCheck__: true&#xff1b;位置 manifest.json : "mp-weixin":{"__usePrivacyCh…

急救车工业路由器应用提升急救效率:车联网、数据采集与远程诊疗

急救车作为医院里医疗急救过程中的重要组成部分&#xff0c;在智慧医疗物联网领域中急救车应用4G工业路由器实现网络部署与数据采集&#xff0c;通过工业4G路由器能够实时采集到病患的生理数据、救护现场音频与视频、GPS定位以及车辆运行状态等重要信息。这些数据将被传输到医疗…

Golang开发--互斥锁和读写锁

互斥锁&#xff08;Mutex&#xff09; 互斥锁&#xff08;Mutex&#xff09;是一种并发控制机制&#xff0c;用于保护共享资源的访问。互斥锁用于确保在任何给定时间只有一个 goroutine&#xff08;Go 语言中的并发执行单元&#xff09;可以访问被保护的共享资源&#xff0c;从…

计算机毕业设计 基于HTML语言的环保网站的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

SVN状态图标不显示

问题可能点1&#xff1a;图标覆盖 1、右键找到设置 2、找到图标覆盖 3、重启TortoiseSVN 问题可能点2&#xff1a;注册表图标顺序太靠下&#xff0c;被占用 1、windowsr, 输入regedit进入注册表 2、找到一下目录 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cu…

基于微信小程序的奶茶点餐小程序设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…

flink集群与资源@k8s源码分析-总述

1 简介 集群和资源模块提供动态资源能力,是分布式系统关键基础设施,分布式datax,分布式索引,事件引擎都需要集群和资源的弹性资源能力,提高伸缩性和作业处理能力。本文分析flink的集群和资源的k8s模块,深入了解其设计原理,为开发自有的集群和资源组件做技术准备, 同时涉…

云计算与大数据——部署Hadoop集群并运行MapReduce集群(超级详细!)

云计算与大数据——部署Hadoop集群并运行MapReduce集群(超级详细&#xff01;) Linux搭建Hadoop集群(CentOS7hadoop3.2.0JDK1.8Mapreduce完全分布式集群) 本文章所用到的版本号&#xff1a; CentOS7 Hadoop3.2.0 JDK1.8 基本概念及重要性 很多小伙伴部署集群用hadoop用mapr…

运动控制:音圈电机

在运动平台中&#xff0c;对于微小运动&#xff0c;例如1-5毫米&#xff0c;甚至更小的行程&#xff0c;常用音圈电机来驱动。 因为它们具有体积小&#xff0c;运动质量小&#xff0c;高加速度等显著特征。 无论是在工业领域&#xff0c;还是在医用内窥镜&#xff0c;呼吸机&…

python - 超详细实现 csv 文件单个、批量读取和输出功能,读取数据并保存导出为 csv 文件教程(详细示例源码,一键复制开箱即用)

介绍 实现了在python中,cvs文件的单个或批量读取,以及导出输出详细示例代码教程,新手小白一看就懂! 简单改下代码,就可以轻松用到你的项目中去了。 示例源码 按照以下示例代码,完成复制。<

Linux服务器自定义登陆提示信息

背景 最近在搭建zookeeper和应用服务环境&#xff0c;需要配置很多东西&#xff0c;然后不同服务器的文件路径之类的东西可能会有一些不同&#xff0c;比较麻烦&#xff0c;就准备给每个服务器配置一个登陆提示&#xff0c;让每一个登陆的用户能很快了解配置信息和文件路径。 …

2023年9月28日历史上的今天大事件早读

公元前551年9月28日 孔子诞辰 1864年9月28日 第一国际成立 1868年9月28日 上海江南制造总局第一号火轮船竣工 1898年9月28日 “戊戌六君子”被处死 1908年9月28日 十三世达赖抵京 1927年9月28日 汾水战役 1928年9月28日 崇安起义 1945年9月28日 中国军队赴越南接受日军投降 195…

写代码生成流程图

我们在写文档&#xff0c;博客的时候&#xff0c;一般都会使用markdown语法&#xff0c;最常见的就是一些github开源项目的README。有时候会去画一些流程图&#xff0c;例如使用process.on或者xmind等第三方网站&#xff0c;然后截图插入到文档中。 今天我们介绍一种使用代码直…