结婚证app制作软件/南京网站设计优化公司

结婚证app制作软件,南京网站设计优化公司,淘宝上做进出口网站有哪些,专业培训seo的机构引言 近年来,大型语言模型(LLM)在自然语言处理任务中展现了令人印象深刻的能力。然而,这些模型的局限性,如知识过时、生成幻觉(hallucination)等问题,促使研究人员开发了多种增强技…
引言

近年来,大型语言模型(LLM)在自然语言处理任务中展现了令人印象深刻的能力。然而,这些模型的局限性,如知识过时、生成幻觉(hallucination)等问题,促使研究人员开发了多种增强技术。其中,模型上下文协议(MCP)和检索增强生成(RAG)是两个重要的概念,特别是在当前的AI研究和应用中。接下来将详细解释MCP和RAG,比较它们的相似点和差异,并讨论它们的实际应用和潜在优势。
在这里插入图片描述

MCP的详细解释

MCP,全称模型上下文协议,是一种协议,旨在通过标准化的方式将LLM与外部工具和系统集成。MCP允许LLM作为AI代理的一部分,与工具互动,这些工具通常托管在服务器上,可以被不同框架使用,即使这些框架使用不同的编程语言。例如,Anthropic推出了MCP,并为Google Drive、Slack、GitHub和Git等系统提供了预建的MCP服务器,详情可见Anthropic的新闻页面。

MCP的一个关键应用是MCP-Solver,这是MCP与约束编程系统集成的第一个应用,具体见arXiv上的论文。该论文展示了如何通过MCP将LLM与MiniZinc等约束求解器集成,开放源代码实现可在GitHub上找到。MCP的成功依赖于行业支持以及在安全、可扩展性和兼容性方面的解决方案。

RAG的详细解释

RAG,全称检索增强生成,是一种架构方法,通过从外部知识库检索相关信息并将其作为上下文提供给LLM,来优化其生成输出。RAG帮助LLM生成更准确、更新的信息,特别适用于需要保持最新信息的支持聊天机器人和问答系统。RAG的工作原理包括两个主要部分:检索组件从数据库或网页中提取相关信息,然后将这些信息无缝整合到LLM的生成过程中,详情见Google Cloud的用例。

arXiv上的调查论文指出,RAG解决了LLM的几个挑战,如幻觉和知识过时问题,通过从外部数据库中获取信息来增强生成的可信度和准确性。这是一种成本效益高的方法,因为更新检索索引比持续微调预训练模型更有效,具体见Oracle的解释。

比较分析

为了更清晰地比较MCP和RAG,我们可以从以下几个方面进行分析:

方面MCPRAG
主要目的集成LLM与外部工具和系统,执行各种操作通过检索信息提供上下文,增强文本生成
互动方式LLM或AI代理主动调用工具,动态控制系统在生成前检索信息,LLM被动接收上下文
适用范围通用,可用于任何工具(如求解器、API调用)特定于信息检索,支持知识密集型任务
典型应用AI代理与GitHub、数据库互动,执行复杂任务聊天机器人、问答系统,提供最新准确信息
灵活性高,允许动态工具调用较低,依赖预定义的检索和生成流程

从表中可以看出,MCP和RAG在增强LLM能力方面有一定的相似性,例如都涉及外部信息或工具的利用,但它们的侧重点不同。MCP更注重让LLM具备与外部系统互动的能力,而RAG则专注于优化文本生成的质量。

讨论与应用

MCP和RAG的差异反映了它们在实际应用中的不同定位。MCP特别适合需要LLM执行复杂操作的场景,例如在开发AI代理时,代理可能需要调用外部工具来完成任务,如从数据库中提取数据或使用约束求解器解决问题。另一方面,RAG更适合需要保持信息最新和准确的场景,例如企业聊天机器人需要回答与产品或服务相关的问题,而这些信息可能超出了LLM的训练数据范围。

一个有趣的观察是,这两者可以结合使用。例如,一个AI代理可以使用MCP调用一个检索工具(如Web搜索),然后通过RAG将检索到的信息整合到其生成响应中,从而实现更强大的功能。这种组合在2025年的AI应用中可能变得越来越常见,尤其是在需要动态交互和实时信息更新的场景中。

MCP的成功依赖于行业对该协议的支持以及解决安全和可扩展性问题,而RAG的普及则得益于其成本效益和易于实施。然而,MCP的通用性可能使其在未来成为更广泛的集成标准,而RAG则可能继续在知识密集型任务中占据主导地位。

结论

总之,MCP和RAG都是增强LLM能力的创新方法,但它们的用途和机制不同。MCP提供了一个通用的框架,允许LLM与各种外部工具互动,而RAG则专注于通过检索信息来改善文本生成。理解这些差异对于选择适合特定用例的技术至关重要,尤其是在当前的AI研究和应用环境中。

关键引用
  • MCP-Solver: Integrating Language Models with Constraint Programming Systems
  • A quick look at MCP with Large Language Models and Node.js
  • What is Retrieval Augmented Generation (RAG)?
  • Retrieval Augmented Generation for Large Language Models: A Survey
  • What is Retrieval-Augmented Generation (RAG)?
  • What is retrieval-augmented generation (RAG)?
  • What is Retrieval-Augmented Generation (RAG)?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/897058.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ue5.5崩溃报gpu错误快速修复注册表命令方法

网上已经有很多方法了,自己写了个regedit比处理dos批处理命令,启动时需要win 管理员身份拷贝后,将以下代码,保存为 run.bat格式批处理文件,右键鼠标,在弹出菜单中,选择用管理员身份运行。即可。…

能量石[算法题]

题目来源:第十五届蓝桥杯大赛软件赛省赛Java 大学 B 组(算法题) 可以参考一下,本人也是比较菜 不喜勿喷,求求求 import java.util.Scanner;​public class Main {public static void main(String[] args) {Scanner s…

马尔科夫不等式和切比雪夫不等式

前言 本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见《机器学习数学通关指南》 正文 统计概率的利剑:掌…

二进制、八进制、十进制和十六进制间的转换(原理及工程实现)

在计算机科学和编程中,进制转换是一个非常重要的基础知识。无论是二进制、八进制、十进制还是十六进制,它们在不同的场景中都有广泛的应用。本文将详细介绍常用进制之间的转换方法,并附上C语言示例代码,帮助大家更好地理解和掌握这…

从零开始的 Kafka 学习(二)| 集群启动

1. 相关概念 1.1 代理:Broker 使用Kafka前,我们都会启动Kafka服务进程,这里的Kafka服务进程我们一般会称之为Kafka Broker 或 Kafka Server。因为Kafka是分布式消息系统所以再实际的生产环境中,是需要多个服务进程形成集群提供消…

python如何随机产生一堆数字并输出

python随机产生一堆数字并输出的方法: 通过for循环语句多次执行for循环里面的“random.randint()”函数产生随机数。将产生的随机数赋值给变量,输出这个变量就可以了 执行结果如下:

vue3与react、 react hooks

一、Vue3新特性:setup、ref、reactive、computed、watch、watchEffect函数、生命周期钩子、自定义hooks函数、toRef和toRefs、shallowReactive 与 shallowRef、readonly 与 shallowReadonly、toRaw 与 markRaw、customRef、provide 与 inject、Fragment、Teleport、…

OpenFeign 学习笔记

OpenFeign 学习笔记 一、基础入门 1.1 简介 OpenFeign 是基于声明式的 REST 客户端,用于简化服务间远程调用。(编程式 REST 客户端(RestTemplate)) 通过接口注解方式定义 HTTP 请求,自动实现服务调用。 …

“沂路畅通”便利服务平台:赋能同城物流,构建高效畅通的货运生态

“沂路畅通”便利服务平台:赋能同城物流,构建高效畅通的货运生态 随着城市化进程的加速,同城物流需求迅速增长,然而货运过程中仍然存在信息不对称、资源浪费、司机服务体验差等痛点。临沂呆马区块链网络科技有限公司(…

Kylin麒麟操作系统服务部署 | NFS服务部署

以下所使用的环境为: 虚拟化软件:VMware Workstation 17 Pro 麒麟系统版本:Kylin-Server-V10-SP3-2403-Release-20240426-x86_64 一、 NFS服务概述 NFS(Network File System),即网络文件系统。是一种使用于…

三参数水质在线分析仪:从源头保障饮用水安全

【TH-ZS03】饮用水安全是人类健康的重要保障,其质量直接关系到人们的生命健康。随着工业化、城市化的快速发展,水体污染问题日益严峻,饮用水安全面临着前所未有的挑战。为了从源头保障饮用水安全,科学、高效的水质监测手段必不可少…

PGlite:浏览器中运行的PostgreSQL

PGlite 是一款基于 WebAssembly(WASM)构建的轻量级 PostgreSQL 数据库引擎,旨在简化开发者在浏览器、Node.js、Bun 或 Deno 环境中运行 PostgreSQL。PGlite 无需复杂的安装或配置,特别适合开发测试、本地化应用及快速原型设计。 一…

【Spring AOP】_使用注解编写AOP程序

目录 1. 以增加方法执行时间为例使用AOP 1.1 引入AOP依赖 1.2 编写AOP程序 2. AOP的重要概念 3. AOP通知类型与通知方法标注 3.1 在通知方法前使用对应注解 3.2 使用Pointcut注解提取公共切点表达式 3.3 跨类使用切点 3.4 切面类排序 1. 以增加方法执行时间为例使用AO…

python网络爬虫开发实战之基本库使用

目录 第二章 基本库的使用 2.1 urllib的使用 1 发送请求 2 处理异常 3 解析链接 4 分析Robots协议 2.2 requests的使用 1 准备工作 2 实例引入 3 GET请求 4 POST请求 5 响应 6 高级用法 2.3 正则表达式 1 实例引入 2 match 3 search 4 findall 5 sub 6 com…

文件上传漏洞与phpcms漏洞安全分析

目录 1. 文件上传漏洞简介 2. 文件上传漏洞的危害 3. 文件上传漏洞的触发条件 1. 文件必须能被服务器解析执行 2. 上传目录必须支持代码执行 3. 需要能访问上传的文件 4. 例外情况:非脚本文件也可能被执行 4. 常见的攻击手法 4.1 直接上传恶意文件 4.2 文件…

2025.3.2机器学习笔记:PINN文献阅读

2025.3.2周报 一、文献阅读题目信息摘要Abstract创新点网络架构实验结论不足以及展望 一、文献阅读 题目信息 题目: Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model期刊: Water Resource…

使用IDEA如何隐藏文件或文件夹

选择file -> settings 选择Editor -> File Types ->Ignored Files and Folders (忽略文件和目录) 点击号就可以指定想要隐藏的文件或文件夹

前端基础之脚手架

脚手架结构 目录结构 这里的package.json,存放着我们去执行npm run serve 或是npm run build的脚本文件 package-lock.json中存放着我们使用的外部包的版本类型,相当于maven src下的main.js是整个项目的入口文件 src下的components用于存放组件&#xff…

MacBook上API调⽤⼯具推荐

在当今的软件开发中,API调用工具已经成为了开发者不可或缺的助手。无论是前端、后端还是全栈开发,API的调试、测试和管理都是日常工作中的重要环节。想象一下,如果没有这些工具,开发者可能需要手动编写复杂的CURL命令,…

pgsql行列转换

目录 一、造测试数据 二、行转列 1.函数定义 2.语法 3.示例 三、列转行 1.函数定义 2.语法 3.示例 一、造测试数据 create table test ( id int, json1 varchar, json2 varchar );insert into test values(1,111,{111}); insert into test values(2,111,222,{111,22…