有哪些做h5的网站/新站优化案例

有哪些做h5的网站,新站优化案例,各种网址大全,长沙正规企业网站制作平台强化学习(Reinforcement Learning, RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错…

强化学习(Reinforcement Learning, RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。

在这里插入图片描述

强化学习任务通常用马尔可夫决策过程来描述:机器处于环境 E E E中,状态空间 X X X,其中每个状态 x ∈ X x \in X xX是机器感知到的环境的描述,机器能采取的动作构成了动作空间 A A A,若某个动作 a ∈ A a \in A aA作用在当前状态 x x x上,则潜在的转移函数 P P P将使得环境从当前状态按照某种概率转移到另一个状态,在转移到另一个状态的同时,环境会根据潜在的“奖赏”函数 R R R反馈给机器一个奖赏。

在环境中状态的转移、奖赏的返回是不受机器控制的,机器只能通过选择要执行的动作来影响环境,也只能通过观察转移后的状态和返回的奖赏来感知环境。

机器要做的是通过在环境中不断地尝试而学得一个“策略”,根据这个“策略”在状态 x x x下就能知道要执行得动作。

在强化学习任务中,学习的目的就是要找到能使长期累积奖赏最大化的策略。

强化学习与监督学习来说,强化学习是没有人直接告诉机器在什么状态下应该做什么动作,只有等到最终结果揭晓,才能通过“反思”之前的动作是否正确来进行学习,因此,强化学习在某种意义上可看作具有“延迟标记信息”的监督学习问题。

强化学习任务的最终奖赏是在多步动作之后才能观察到,这里考虑简单情形:最大化单步奖赏,即仅考虑一步操作。单步强化学习任务对应了一个理论模型:k-摇臂赌博机。

k- 摇臂赌博机:有k个摇臂,赌徒在投入一个硬币后可选择按下其中一个摇臂,每个摇臂以一定的概率吐出硬币,但这个概率赌徒并不知道。赌徒的目标是通过一定的策略最大化自己的奖赏,即获得最多的硬币。

若仅为获知每个摇臂的期望奖赏,则可采用“仅探索”法:将所有的尝试机会平均分配给每个摇臂,最后以每个摇臂各自的平均吐币概率作为其奖赏的近似评估。若仅为执行奖赏最大的动作,则可采用“仅利用”法:按下目前最优的摇臂。“仅探索”法会失去很多选择最优摇臂的机会;“仅利用”法可能经常选不到最优摇臂。

ϵ \epsilon ϵ贪心法是基于一个概率来对探索和利用进行折中:每次尝试时,以 ϵ \epsilon ϵ的概率进行探索,以 1 − ϵ 1 - \epsilon 1ϵ的概率进行利用。

则平均奖赏为:
Q ( k ) = 1 n ∑ i = 1 n v i Q(k) = \frac{1}{n} \sum_{i=1}^nv_i Q(k)=n1i=1nvi
可以改成增量计算:
Q n ( k ) = 1 n ( ( n − 1 ) × Q n − 1 ( k ) + v n ) = Q n − 1 ( k ) + 1 n ( v n − Q n − 1 ( k ) ) Q_n(k) = \frac {1}{n} ( (n - 1) \times Q_{n-1}(k) + v_n) \\ = Q_{n-1}(k) + \frac{1}{n}(v_n - Q_{n-1}(k)) Qn(k)=n1((n1)×Qn1(k)+vn)=Qn1(k)+n1(vnQn1(k))

代码

k-摇臂赌博机实现:

import numpy as npclass KArmedBandit:def __init__(self, k=10, true_reward_mean=0, true_reward_std=1):"""k: 摇臂数量true_reward_mean: 奖励均值的均值true_reward_std: 奖励均值的标准差"""self.k = kself.q_true = np.random.normal(true_reward_mean, true_reward_std, k)  # 每个摇臂的真实均值def step(self, action):"""执行动作(拉某个摇臂),返回奖励"""reward = np.random.normal(self.q_true[action], 1)  # 以 q*(a) 为均值的正态分布return reward

ϵ \epsilon ϵ贪心实现:

from data_processing import KArmedBandit
import numpy as np
import matplotlib.pyplot as pltdef select_action(epsilon:float, q_estimates:np.ndarray):"""根据 epsilon-greedy 策略选择动作"""if np.random.rand() < epsilon: # 随机选择return np.random.choice(len(q_estimates))  # else:return np.argmax(q_estimates)  # 选择估计奖励最高的动作
def update_estimates(q_estimates:np.ndarray, action:int, reward:float, action_counts:np.ndarray):"""更新动作的估计奖励"""action_counts[action] += 1q_estimates[action] += (reward - q_estimates[action]) / action_counts[action]return q_estimates, action_countsdef start(k:int, epsilon:float, epochs:int, stps:int):"""开始运行 epsilon-greedy 算法"""q_estimates = np.zeros(k)  # 每个摇臂的估计奖励action_counts = np.zeros(k)  # 每个摇臂被选择的次数avg_rewards = np.zeros(stps)  # 记录每次拉摇臂的奖励for epoch in range(epochs):bandit = KArmedBandit(k)rewards = []for step in range(stps):action = select_action(epsilon, q_estimates)reward = bandit.step(action)q_estimates, action_counts = update_estimates(q_estimates, action, reward, action_counts)rewards.append(reward) # 记录奖励avg_rewards += np.array(rewards) # 记录每次拉摇臂的奖励avg_rewards /= epochsreturn avg_rewardsif __name__ == '__main__':k = 10epsilon = 0.1epochs = 2000stps = 1000avg_rewards = start(k, epsilon, epochs, stps)plt.plot(avg_rewards)plt.xlabel('Steps')plt.ylabel('Average reward')plt.title('RL: epsilon-greedy Performance')plt.show()

在这里插入图片描述

深入理解强化学习(一)- 概念和术语 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

共轭梯度法笔记

一、梯度下降法 x k 1 x k − α ∇ f ( x k ) x_{k1} x_k - \alpha \nabla f(x_k) xk1​xk​−α∇f(xk​) 这是普通的梯度下降公式&#xff0c;有两个量是关键&#xff0c;步长 α \alpha α和方向 ∇ f ( x k ) \nabla f(x_k) ∇f(xk​)。这里的方向直接选择了梯度方向&…

我的世界1.20.1forge模组开发进阶物品(7)——具有动画、3D立体效果的物品

基础的物品大家都会做了对吧?包括武器的释放技能,这次来点难度,让物品的贴图呈现动画效果和扔出后显示3D立体效果,这个3D立体效果需要先学习blockbench,学习如何制作贴图。 Blockbench Blockbench是一个用于创建和编辑三维模型的免费软件,特别适用于Minecraft模型的设计…

SpringBoot接口自动化测试实战:从OpenAPI到压力测试全解析

引言&#xff1a;接口测试的必要性 在微服务架构盛行的今天&#xff0c;SpringBoot项目的接口质量直接影响着系统稳定性。本文将分享如何通过自动化工具链实现接口的功能验证与性能压测&#xff0c;使用OpenAPI规范打通测试全流程&#xff0c;让您的接口质量保障体系更加完备。…

微软具身智能感知交互多面手!Magma:基于基础模型的多模态AI智能体

作者&#xff1a; Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu, MuCai, SeonghyeonYe, JoelJang, Yuquan Deng, Lars Liden, Jianfeng Gao 单位&#xff1a;微软研究院&#xff0c;马里兰大学&#xff0c;威斯康星大学麦迪逊分校…

Baklib云内容中台的核心架构是什么?

云内容中台分层架构解析 现代企业内容管理系统的核心在于构建动态聚合与智能分发的云端中枢。以Baklib为代表的云内容中台采用三层架构设计&#xff0c;其基础层为数据汇聚工具集&#xff0c;通过标准化接口实现多源异构数据的实时采集与清洗&#xff0c;支持从CRM、ERP等业务…

华为 VRP 系统简介配置SSH,TELNET远程登录

华为 VRP 系统简介&配置TELNET远程登录 1.华为 VRP 系统概述 1.1 什么是 VRP VRP&#xff08;Versatile Routing Platform 华为数通设备操作系统&#xff09;是华为公司数据通信产品的通用操作系统平台&#xff0c;从低端到核心的全系列路由器、以太网交换机、业务网关等…

从新加坡《Companion Guide on Securing AI Systems 》看可信AI全生命周期防护框架构建

从新加坡《AI系统安全指南配套手册》看可信AI全生命周期防护框架构建 一、引言 1.1 研究背景与意义 近年来,人工智能(AI)技术以前所未有的速度蓬勃发展,已然成为推动各行业变革与创新的核心驱动力。从医疗领域辅助疾病诊断,到金融行业的风险预测与智能投顾,再到交通领…

C++学习之C++初识、C++对C语言增强、对C语言扩展

一.C初识 1.C简介 2.第一个C程序 //#include <iostream> //iostream 相当于 C语言下的 stdio.h i - input 输入 o -output 输出 //using namespace std; //using 使用 namespace 命名空间 std 标准 &#xff0c;理解为打开一个房间&#xff0c;房间里有我们所需…

HTMLS基本结构及标签

HTML5是目前制作网页的核心技术&#xff0c;有叫超文本标记语言。 基本结构 声明部分位于文档的最前面&#xff0c;用于向浏览器说明当前文档使用HTML标准规范。 根部标签位于声明部分后&#xff0c;用于告知浏览器这是一个HTML文档。< html>表示文档开始&#xff0c;&l…

eMMC存储器详解(存储区域结构、EXT_CSD[179]、各分区介绍、主要引脚、命令格式与类型等)

读本篇博文所需要的先行知识 关于芯片内部的ROM的作用、工作原理的介绍&#xff0c;链接如下&#xff1a; https://blog.csdn.net/wenhao_ir/article/details/145969584 eMMC的物理结构、特点、用途 这个标题的相关内容见我的另一篇博文&#xff0c;博文链接如下&#xff1a…

杰和科技工业整机AF208|防尘+静音+全天候运行

在特殊的工业环境中&#xff0c;实现快速生产离不开各类工业计算机的强大支持。杰和科技工业计算机AF208&#xff0c;作为核心控制单元&#xff0c;凭借其坚固可靠的外壳、先进的散热技术以及紧凑灵活的部署特点&#xff0c;发挥着关键作用。 硬实力外壳&#xff0c;无惧尘埃 …

Lua | 每日一练 (4)

&#x1f4a2;欢迎来到张胤尘的技术站 &#x1f4a5;技术如江河&#xff0c;汇聚众志成。代码似星辰&#xff0c;照亮行征程。开源精神长&#xff0c;传承永不忘。携手共前行&#xff0c;未来更辉煌&#x1f4a5; 文章目录 Lua | 每日一练 (4)题目参考答案线程和协程调度方式上…

Fiji —— 基于 imageJ 的免费且开源的图像处理软件

文章目录 一、Fiji —— 用于科学图像处理和分析1.1、工具安装&#xff08;免费&#xff09;1.2、源码下载&#xff08;免费&#xff09; 二、功能详解2.0、Fiji - ImageJ&#xff08;Web应用程序&#xff09;2.1、常用功能&#xff08;汇总&#xff09;2.2、Fiji - Plugins&am…

PyQT(PySide)的上下文菜单策略设置setContextMenuPolicy()

在 Qt 中&#xff0c;QWidget 类提供了几种不同的上下文菜单策略&#xff0c;这些策略通过 Qt::ContextMenuPolicy 枚举类型来定义&#xff0c;用于控制控件&#xff08;如按钮、文本框等&#xff09;在用户右键点击时如何显示上下文菜单。 以下是 Qt::ContextMenuPolicy 枚举中…

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.2.2倒排索引原理与分词器(Analyzer)

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 1.2.2倒排索引原理与分词器&#xff08;Analyzer&#xff09;1. 倒排索引&#xff1a;搜索引擎的基石1.1 正排索引 vs 倒排索引示例数据对比&#xff1a; 1.2 倒排索引核心结…

Springboot项目本地连接并操作MySQL数据库

目录 前提 准备工作 用cmd在本地创建数据库、表&#xff1a; 1.创建springboot项目&#xff08;已有可跳过&#xff09; 2.编辑Mybatis配置 3.连接数据库 4.创建模型类&#xff0c;用于与数据库里的数据表相连 5.创建接口mapper&#xff0c;定义对数据库的操作 6.创建…

java和Springboot和vue开发的企业批量排班系统人脸识别考勤打卡系统

演示视频&#xff1a; https://www.bilibili.com/video/BV1KU9iYsEBU/?spm_id_from888.80997.embed_other.whitelist&t52.095574&bvidBV1KU9iYsEBU 主要功能&#xff1a; 管理员管理员工&#xff0c;采集员工人脸特征值存入数据库&#xff0c;可选择多个员工批量排班…

打开 Windows Docker Desktop 出现 Docker Engine Stopped 问题

一、关联文章: 1、Docker Desktop 安装使用教程 2、家庭版 Windows 安装 Docker 没有 Hyper-V 问题 3、安装 Windows Docker Desktop - WSL问题 二、问题解析 打开 Docker Desktop 出现问题,如下: Docker Engine Stopped : Docker引擎停止三、解决方法 1、检查服务是否…

Mercury、LLaDA 扩散大语言模型

LLaDA 参考&#xff1a; https://github.com/ML-GSAI/LLaDA https://ml-gsai.github.io/LLaDA-demo/ 在线demo&#xff1a; https://huggingface.co/spaces/multimodalart/LLaDA Mercury 在线demo&#xff1a; https://chat.inceptionlabs.ai/ 速度很快生成

Rust~String、str、str、String、Box<str> 或 Box<str>

Rust语言圣经中定义 str Rust 语言类型大致分为两种&#xff1a;基本类型和标准库类型&#xff0c;前者由语言特性直接提供&#xff0c;后者在标准库中定义 str 是唯一定义在 Rust 语言特性中的字符串&#xff0c;但也是几乎不会用到的字符串类型 str 字符串是 DST 动态大小…