【单细胞第二节:单细胞示例数据分析-GSE218208】

GSE218208

1.创建Seurat对象

#untar(“GSE218208_RAW.tar”)

rm(list = ls())
a = data.table::fread("GSM6736629_10x-PBMC-1_ds0.1974_CountMatrix.tsv.gz",data.table = F)
a[1:4,1:4]
library(tidyverse)
a$`alias:gene` = str_split(a$`alias:gene`,":",simplify = T)[,1]
#str_split_i(a$`alias:gene`,":",i = 1)
a = distinct(a,`alias:gene`,.keep_all = T) #从数据框a中去除alias:gene列中重复的值,同时保留所有列的信息。
a = column_to_rownames(a,var = "alias:gene") #将数据框a中的alias:gene列的值设置为行名(row names),并将alias:gene列从数据框中移除。
a[1:4,1:4]
library(Seurat)
pbmc <- CreateSeuratObject(counts = a, project = "a", min.cells = 3, min.features = 200)
#使用输入的基因表达矩阵a创建一个新的Seurat对象,并设置项目名称为"a",同时过滤掉表达在少于3个细胞中的基因,以及过滤掉表达基因数少于200的细胞。

2.质控

pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
head(pbmc@meta.data, 3)
VlnPlot(pbmc, features = c("nFeature_RNA","nCount_RNA", "percent.mt"), ncol = 3,pt.size = 0.5)
pbmc = subset(pbmc,nFeature_RNA < 4200 &nCount_RNA < 18000 &percent.mt < 18)

3.降维聚类分群

f = "obj.Rdata"
if(!file.exists(f)){pbmc = pbmc %>% NormalizeData() %>%  FindVariableFeatures() %>%  ScaleData(features = rownames(.)) %>%  RunPCA(pc.genes = pbmc@var.genes)  %>%FindNeighbors(dims = 1:15) %>% FindClusters(resolution = 0.5) %>% RunUMAP(dims = 1:15) %>% RunTSNE(dims = 1:15)save(pbmc,file = f)
}
load(f)
ElbowPlot(pbmc)
p1 <- DimPlot(pbmc, reduction = "umap",label = T)+NoLegend();p1

4.makergene

library(dplyr)
f = "markers.Rdata"
if(!file.exists(f)){pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE,min.pct = 0.25)save(pbmc.markers,file = f)
}
load(f)
mks = pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_log2FC)
g = unique(mks$gene)

5.makergene的可视化

DoHeatmap(pbmc, features = g) + NoLegend()+scale_fill_gradientn(colors = c("#2fa1dd", "white", "#f87669"))DotPlot(pbmc, features = g,cols = "RdYlBu") +RotatedAxis()VlnPlot(pbmc, features = g[1:3])FeaturePlot(pbmc, features = g[1:4])

6.注释亚群

手动注释

a = read.delim("../supp/markers.txt",header = F)
gt = split(a[,2],a[,1])DotPlot(pbmc, features = gt,cols = "RdYlBu") +RotatedAxis()

#利用writeLines(paste0(0:11,“,”)),自己手动写,打开一新的text file,将writeLines(paste0(0:11,“,”))的输出写在里边,然后保存在工作目录下,命名为xx.txt

writeLines(paste0(0:11,","))
celltype = read.table("anno.txt",header = F,sep = ",") #自己照着DotPlot图填的
celltype
new.cluster.ids <- celltype$V2
names(new.cluster.ids) <- levels(pbmc)
seu.obj <- RenameIdents(pbmc, new.cluster.ids)
save(seu.obj,file = "seu.obj.Rdata")
p1 <- DimPlot(seu.obj, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
p1

自动注释

library(celldex)
library(SingleR)
ls("package:celldex")
f = "../supp/single_ref/ref_BlueprintEncode.RData"
if(!file.exists(f)){ref <- celldex::BlueprintEncodeData()save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = pbmc
test = scRNA@assays$RNA@layers$data
rownames(test) = Features(scRNA)
colnames(test) = Cells(scRNA)
pred.scRNA <- SingleR(test = test, ref = ref,labels = ref$label.main, clusters = scRNA@active.ident)
pred.scRNA$pruned.labels
#查看注释准确性 
plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
levels(scRNA)
scRNA <- RenameIdents(scRNA,new.cluster.ids)
levels(scRNA)
p2 <- DimPlot(scRNA, reduction = "umap",label = T,pt.size = 0.5) + NoLegend()
p1+p2

在这里插入图片描述
可选的celldex包:
在这里插入图片描述

a = 1
save(a,file = "a.Rdata")b = load("a.Rdata")b = get(load("a.Rdata")) #load可将a的数值赋值给b

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S 快速实战

K8S 核心架构原理: 我们已经知道了 K8S 的核心功能:自动化运维管理多个容器化程序。那么 K8S 怎么做到的呢?这里,我们从宏观架构上来学习 K8S 的设计思想。首先看下图: K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责核心的调度、管理和运维,Slave…

134.力扣刷题--加油站--滑动窗口

你知道的&#xff0c;失败总是贯穿人生的始终。 加油站 在一条环路上有 n 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#x…

爬虫基础(二)Web网页的基本原理

一、网页的组成 网页由三部分构成&#xff1a;HTML、JavaScript、CSS。 &#xff08;1&#xff09;HTML HTML 相当于网页的骨架&#xff0c;它通过使用标签来定义网页内容的结构。 举个例子&#xff1a; 它把图片标签为img、把视频标签为video&#xff0c;然后组合到一个界面…

Three.js实现3D动态心形与粒子背景的数学与代码映射解析

一、效果概述 本文通过Three.js构建了一个具有科技感的3D场景&#xff0c;主要包含两大视觉元素&#xff1a; 动态心形模型&#xff1a;采用数学函数生成基础形状&#xff0c;通过顶点操作实现表面弧度。星空粒子背景&#xff1a;随机分布的粒子群组形成空间层次感。复合动画…

Java线程认识和Object的一些方法

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 要对Java线程有整体了解&#xff0c;深入认识到里面的一些方法和Object对象方法的区别。认识到Java对象的ObjectMonitor&#xff0c;这有助于后面的Synchron…

【蓝桥杯省赛真题02】C++猫吃鱼 第十届蓝桥杯青少年创意编程大赛 算法思维 C++编程省赛真题解

目录 C猫吃鱼 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、运行结果 五、考点分析 七、推荐资料 C猫吃鱼 第十届蓝桥杯青少年创意编程大赛C选拔赛真题 一、题目要求 明明家从1号站点出发&#xff0c;开车去旅游&#xff0c;一共要经过n个…

无公网IP 外网访问 本地部署夫人 hello-algo

hello-algo 是一个为帮助编程爱好者系统地学习数据结构和算法的开源项目。这款项目通过多种创新的方式&#xff0c;为学习者提供了一个直观、互动的学习平台。 本文将详细的介绍如何利用 Docker 在本地安装部署 hello-algo&#xff0c;并结合路由侠内网穿透实现外网访问本地部署…

基础项目实战——学生管理系统(c++)

目录 前言一、功能菜单界面二、类与结构体的实现三、录入学生信息四、删除学生信息五、更改学生信息六、查找学生信息七、统计学生人数八、保存学生信息九、读取学生信息十、打印所有学生信息十一、退出系统十二、文件拆分结语 前言 这一期我们来一起学习我们在大学做过的课程…

实现基础的shell程序

1. 实现一个基础的 shell 程序&#xff0c;主要完成两个命令的功能 cp 和 ls 1.1.1. cp 命令主要实现&#xff1a; ⽂件复制⽬录复制 1.1.2. ls 命令主要实现&#xff1a; ls -l 命令的功能 1.1. 在框架设计上&#xff0c;采⽤模块化设计思想&#xff0c;并具备⼀定的可扩…

ADC 精度 第二部分:总的未调整误差解析

在关于ADC精度的第一篇文章中&#xff0c;我们阐述了模拟-数字转换器&#xff08;ADC&#xff09;的分辨率和精度之间的区别。现在&#xff0c;我们可以深入探讨影响ADC总精度的因素&#xff0c;这通常被称为总未调整误差&#xff08;TUE&#xff09;。 你是否曾好奇ADC数据表…

渲染流程概述

渲染流程包括 CPU应用程序端渲染逻辑 和 GPU渲染管线 一、CPU应用程序端渲染逻辑 剔除操作对物体进行渲染排序打包数据调用Shader SetPassCall 和 Drawcall 1.剔除操作 视椎体剔除 &#xff08;给物体一个包围盒&#xff0c;利用包围盒和摄像机的视椎体进行碰撞检测&#xf…

CF 764B.Timofey and cubes(Java实现)

题目分析 输入n个数字&#xff0c;首尾交换&#xff0c;奇数对换&#xff0c;偶数对不换 思路分析 存入数组&#xff0c;遍历时判断i%20时(数组下标0开始&#xff0c;所以题目分析没有错)&#xff0c;对换 代码 import java.util.*;public class Main {public static void ma…

Transformer+vit原理分析

目录 一、Transformer的核心思想 1. 自注意力机制&#xff08;Self-Attention&#xff09; 2. 多头注意力&#xff08;Multi-Head Attention&#xff09; 二、Transformer的架构 1. 整体结构 2. 编码器层&#xff08;Encoder Layer&#xff09; 3. 解码器层&#xff08;Decoder…

WPS mathtype间距太大、显示不全、公式一键改格式/大小

1、间距太大 用mathtype后行距变大的原因 mathtype行距变大到底怎么解决-MathType中文网 段落设置固定值 2、显示不全 设置格式&#xff1a; 打开MathType编辑器点击菜单栏中的"格式(Format)"选择"间距(Spacing)"在弹出的对话框中调整"分数间距(F…

C# 添加、替换、提取、或删除Excel中的图片

在Excel中插入与数据相关的图片&#xff0c;能将关键数据或信息以更直观的方式呈现出来&#xff0c;使文档更加美观。此外&#xff0c;对于已有图片&#xff0c;你有事可能需要更新图片以确保信息的准确性&#xff0c;或者将Excel 中的图片单独保存&#xff0c;用于资料归档、备…

Python练习(2)

今日题单 吃鱼还是吃肉 PTA | 程序设计类实验辅助教学平台 降价提醒机器人PTA | 程序设计类实验辅助教学平台 幸运彩票 PTA | 程序设计类实验辅助教学平台 猜帽子游戏 PTA | 程序设计类实验辅助教学平台 谁管谁叫爹 PTA | 程序设计类实验辅助教学平台 就不告诉你 PTA | 程…

Formality:黑盒(black box)

相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482 简介 在使用Formality时&#xff0c;黑盒(black box)的概念很重要&#xff0c;指的是一个其功能未知的设计。黑盒通常用于设计中不可综合的组件&#xff0c;包括RAM…

开源2+1链动模式AI智能名片S2B2C商城小程序:利用用户争强好胜心理促进分享行为的策略研究

摘要&#xff1a;随着互联网技术的快速发展和社交媒体的普及&#xff0c;用户分享行为在企业营销中的作用日益凸显。本文旨在探讨如何利用用户的争强好胜心理&#xff0c;通过开源21链动模式AI智能名片S2B2C商城小程序&#xff08;以下简称“小程序”&#xff09;促进用户分享行…

八股学习 微服务篇

微服务篇 常见面试内容Spring Cloud 常见组件注册中心Ribbon负载均衡策略服务雪崩 常见面试内容 Spring Cloud 常见组件 Spring Cloud有5个常见组件&#xff1a; Eureka/Nacos:注册中心&#xff1b;Ribbon:负载均衡&#xff1b;Feign:远程调用&#xff1b;Hystrix/Sentinel:服…

Synology 群辉NAS安装(6)安装mssql

Synology 群辉NAS安装&#xff08;6&#xff09;安装mssql 写在前面mssql 2019:成功安装说明&#xff0c;这个最终成功了 mssql 2022没有成功1. pull image2.启动mssql docker container 远程连接 写在前面 mssq是一个重要节点。 这是因为我对mysql没有一丝好感。虽然接触了许…