本项目是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包括环境配置、本地部署、高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。
【项目地址】
https://github.com/datawhalechina/self-llm.git
Phi-4 Langchain接入
环境准备
本文基础环境如下:
----------------
ubuntu 22.04
python 3.12
cuda 12.1
pytorch 2.3.0
----------------
本文默认学习者已安装好以上 Pytorch(cuda) 环境,如未安装请自行安装。
pip 换源加速下载并安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install transformers==4.44.2
pip install huggingface-hub==0.25.0
pip install accelerate==0.34.2
pip install modelscope==1.18.0
pip install langchain==0.3.0
考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了Phi-4的环境镜像,点击下方链接并直接创建Autodl示例即可。 https://www.codewithgpu.com/i/datawhalechina/self-llm/Qwen2.5-self-llm
模型下载
使用魔搭社区中的 modelscope
中的 snapshot_download
函数下载模型,第一个参数为模型名称(如何找到该名称?可以在魔搭社区搜该模型,如下图中所框),参数 cache_dir
为模型的下载路径,参数revision
一般默认为master
。
在/root/autodl-tmp
新建 model_download.py
文件并在其中输入以下内容,粘贴代码后记得保存文件,如下所示。并运行 python model_download.py
执行下载,模型大小为 28 GB左右,下载模型大概需要10到 20 分钟。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('LLM-Research/phi-4', cache_dir='/root/autodl-tmp', revision='master')
注意:记得修改
cache_dir
为你的模型下载路径哦~
代码准备
为便捷构建 LLM
应用,我们需要基于本地部署的 Phi_4_LLM
,自定义一个 LLM
类,(这个类主要用于加载和调用一个基于本地的预训练语言模型,如Phi_4,并根据1给定的提示生成文本响应)将 Phi_4
接入到 LangChain
框架中。完成自定义 LLM
类之后,可以以完全一致的方式调用 LangChain
的接口,而无需考虑底层模型调用的不一致。
基于本地部署的 Phi_4
自定义 LLM
类并不复杂,我们只需从 LangChain.llms.base.LLM
类继承一个子类,并重写构造函数与 _call
函数即可:
在当前路径新建一个 LLM.py
文件,并输入以下内容,粘贴代码后记得保存文件。
from langchain.llms.base import LLM #基础类,用于实现自定义的语言模型
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun #回调管理器,用于处理在模型运行期间的事件
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, LlamaTokenizerFast #Hugging Face 提供的库,用于加载预训练的 NLP 模型
import torchclass Phi_4_LLM(LLM):# 基于本地 Phi_4 自定义 LLM 类tokenizer: AutoTokenizer = None #tokenizer:用于将输入文本转换为模型可以理解的 tokenmodel: AutoModelForCausalLM = None #model:预训练的语言模型 def __init__(self, mode_name_or_path :str): #__init__ 方法初始化模型和分词器super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False) #使用 AutoTokenizer.from_pretrained 加载分词器self.tokenizer.pad_token_id = self.tokenizer.eos_token_id = 100265self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16, device_map="auto") #使用 AutoModelForCausalLM.from_pretrained 加载预训练的因果语言模型,并设置数据类型为 bfloat16,使用自动设备分配策略。self.model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path) #设置生成配置print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any): #_call 方法用于生成文本响应messages = [{"role": "user", "content": prompt }] #构造消息列表,包含用户的角色和提示内容input_ids = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) #使用 apply_chat_template 方法应用聊天模板,并获取输入 IDmodel_inputs = self.tokenizer([input_ids], return_tensors="pt").to(self.model.device) #将输入 ID 转换为 PyTorch 张量,并移动到 GPU 上generated_ids = self.model.generate(model_inputs.input_ids, attention_mask=model_inputs['attention_mask'], max_new_tokens=512) #使用 generate 方法生成新的 tokengenerated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] #处理生成的 token,移除输入部分,只保留新生成的部分response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response #将生成的 token 解码为文本响应,并返回@propertydef _llm_type(self) -> str:return "Phi_4"
在上述类定义中,我们分别重写了构造函数和 _call
函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 Phi_4
模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call
函数是 LLM
类的核心函数,LangChain
会调用该函数来调用 LLM
,在该函数中,我们调用已实例化模型的 generate
方法,从而实现对模型的调用并返回调用结果。
在整体项目中,我们将上述代码封装为 LLM.py
,后续将直接从该文件中引入自定义的 LLM 类。
调用
然后就可以像使用任何其他的langchain大模型功能一样使用了。
注意:记得修改模型路径为你的路径哦~
from LLM import Phi_4_LLM
llm = Phi_4_LLM(mode_name_or_path = "/root/autodl-tmp/LLM-Research/phi-4")print(llm("你是谁"))
报错
在调用的时候我出现了一个报错如下图所示:
报错原因是我一开始在LLM.py文件中写的类名是Phi_4,然后from LLM import Phi_4_LLM
这行代码的作用是从 LLM
模块中导入 Phi_4_LLM
类,将这两者保持一致即可。所以将Phi_4修改为Phi_4_LLM后就调用成功了~嘻嘻