SparrowRTOS系列:链表版本内核

前言

Sparrow RTOS是笔者之前写的一个极简性RTOS,初代版本只有400行,后面笔者又添加了消息队列、信号量、互斥锁三种IPC机制,使之成为一个较完整、堪用的内核,初代版本以简洁为主,使用数组和表作为任务挂载的抽象数据结构,对数表版本的Sparrow RTOS总结如下:

缺陷

由于数组和表的限制,该版本并不支持同优先级和时间片功能,设计互斥锁时也受到一定影响,而且最大只支持32个任务,有许多不便之处。

优点

使用数表存储任务,对任务的挂载以位操作和下标操作为主,内核简洁小巧,执行效率高,适用于任务较少、硬件资源少的情况。

链表版本内核的设计

使用链表作为任务挂载的数据结构,能够实现同优先级、时间片等功能,对任务对象的操作也更加灵活。

链表设计

双向链表
双向链表
双向链表
双向链表
链表头部
链表头节点
链表节点
链表尾节点

任务链表由头部节点和任务节点两部分组成,头部会指向头节点和尾节点,头节点到尾节点之间会形成一个环路。

就绪列表设计

链表简化设计如下:

链表数组Index
链表头部Index1
任务节点
链表头部Index2
任务节点
链表头部Index3
任务节点

实际设计:

双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
双向链表
链表头部Index1
任务头节点
任务节点
任务尾节点
链表头部Index2
任务头节点
任务节点
任务尾节点
链表头部Index3
任务头节点
任务节点
任务尾节点

任务节点通过链表进行挂载,那么怎么找到任务对象的起始地址呢?

请读者想一想,任务对象的成员都是已知的,所以我们完全可以用链表节点的地址减去前面的成员的地址,就能得到任务对象的起始地址,然后再把起始地址类型转换为任务对象指针。

基于这个思想,其实我们是可以在面向对象的语言中修改私有属性的(如果这门语言支持指针这种直接操作内存的语法的话)。

不过一个个算还是太麻烦了,我们可以直接使用宏:

//get father struct address
//how to use it:struct parent *parent_ptr = container_of(child_ptr, struct parent, child)
#define container_of(ptr, type, member) \((type *)((char *)(ptr) - offsetof(type, member)))

这样就可以直接通过链表找到任务对象起始地址了。

相对于初步的Sparrow RTOS,链表版本的功能增加如下,增加了一个TimeSlice,也就是时间片功能。


void xTaskCreate( TaskFunction_t pxTaskCode,const uint16_t usStackDepth,void * const pvParameters,uint32_t uxPriority,TaskHandle_t * const self,uint8_t TimeSlice)

任务优先级设置

使用链表数组对应每个优先级,因此我们可以通过设置链表数组的大小来更改支持的优先级范围。不过由于支持同优先级和时间片,因此挂载的任务数量其实是不受限制的(除非内存不够)。

时间片

时间片是针对同优先级的说法,当最高优先级有多个任务时,每个任务会根据自身设置的时间片轮流享有CPU运行时间。

在时钟触发型RTOS中,一个时间片就是两次systick时钟中断之间的响应间隔,在Sparrow RTOS中,默认为1ms。

例如:

    xTaskCreate(    taskA,256,NULL,3,&tcbTask1,1);xTaskCreate(    taskB,256,NULL,3,&tcbTask2,3);

对于taskA和taskB,当最高优先级为3时,这两个任务会轮流执行,不过taskA只会执行1个时间片,然后就会将CPU执行权交给taskB,taskB会执行三个时间片,然后再将CPU执行权交给taskA,如此反复循环(如果最高优先级一直是3)。

互斥锁设计

在Sparrow RTOS的数表版本中,互斥锁的优先级反转功能是设置优先级为阻塞任务中最大的那个优先级+1,但是这样会导致浪费优先级,对于可能发生阻塞的任务,我们要确保这些任务的优先级必须设置合理,不然会导致灾难的发生。

但是对于链表版本,由于支持同优先级,因此我们可以设置相同的优先级避免优先级反转现象的发生,而不会占用额外的优先级。

原子操作

由于临界区屏蔽中断的较为粗暴,所以对于简单的加减操作,可以使用内核提供的原子操作,例如:

atomic_add(a,v),表示*v + a
atomic_inc(v),表示*v自加

考虑下面的情况:

void  taskA(){a++;
任务切换发生,另一个任务令a++;b = a;读取a,但是a的值是错误的
}void  taskB(){a++;c = a; a的值是错误的
}

我们使用A和B两个线程对a进行递增,但是两个线程的递增可能是无效的,例如:

线程1读取counter值等于0
线程1增加counter值
CPU0写入counter值等于1
线程2读取counter值等于0
线程2增加counter值
线程1写入counter值等于1
最终counter值等于1

原子操作具有return版本,例如:

int a = atomic_inc_return(a,v);

其实原子操作不仅可以保证线程操作的原子性,也可以在多CPU条件下保证数据操作的原子性。

总结

以上就是对Sparrow RTOS链表版本内核的总结,整体来看,链表版本支持更多任务数量和功能,但是执行效率和简洁性不如数表版本,不过二者适用情景不同,根据实际情况选择即可。

笔者本人更喜欢数表版本,只使用了几百行程序就实现了RTOS的基本功能,简洁明了,同时也是一个良好的学习素材。笔者追求的程序风格一直都是模块化、高效、简洁明了,数表版本的内核是非常令笔者得意的,毕竟几千几万行的操作系统内核浩如烟海,几百行的可不多见。

对于学习Sparrow RTOS的读者来说,笔者推荐数表版本的内核,虽然代码量不多,但彻底搞懂并能更改代码可不容易。

结语

Sparrow RTOS将会持续维护更新,不断完善,其实笔者也是有为它添加设备树、驱动框架和网络协议栈这些功能的想法,不过这都是后话了,也许哪天会更新,也许一直没时间做这些,这都是不确定的。不过它的初衷就是一个学习用途的RTOS,而它也确实非常适合这一任务。

最后,笔者真诚希望读者都能在Sparrow RTOS的教程中收获对操作系统的思考与领悟,操作系统的学习之路道阻且长,在海滩拾贝的过程中,希望读者也能收获属于自己的快乐。

以上,与君共勉。

项目地址:skaiui2/SKRTOS_sparrow: Lightweight rtos inspired by SKRTOS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892733.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#使用OpenTK绘制3D可拖动旋转图形三棱锥

接上篇,绘制着色矩形 C#使用OpenTK绘制一个着色矩形-CSDN博客 上一篇安装OpenTK.GLControl后,这里可以直接拖动控件GLControl 我们会发现GLControl继承于UserControl //// 摘要:// OpenGL-aware WinForms control. The WinForms designer will always call the default//…

Oracle查询-in条件超过1000

目录 1.不分页 2.分页 oracle数据库中,in的查询条件超过1000的话,就会报错,应该怎样处理这样的情况呢? 1.不分页 把查询条件分成几个list,每个list有1000个数据,有几个list查询几次数据库就行了 2.分…

Android Room 报错:too many SQL variables (code 1 SQLITE_ERROR) 原因及解决方法

报错信息: android.database.sqlite.SQLiteException: too many SQL variables (code 1 SQLITE_ERROR): while compiling: SELECT * FROM points WHERE id IN (?,?,?,...,?,?,?)SQLiteException: too many SQL variables 通常是由于一次查询或插入的 SQL 语句…

ctf竞赛

在CTF(Capture The Flag)竞赛中,前端开发和后端开发都非常重要,二者各有其关键作用,很难简单地说哪个更重要,以下是具体分析: 前端开发的重要性 用户体验与交互:CTF竞赛平台的前端是…

【Vue】点击侧边导航栏,右侧main对应显示

需求&#xff1a;点击侧边导航栏&#xff0c;右侧main对应显示 通过v-if或v-show等指令来控制不同内容的显示隐藏来实现 注意&#xff1a; 使用v-if时候进行导航栏切换&#xff0c;右侧显示区域可能会出现样式错乱&#xff1b;使用v-show则不会出现此错误 <template>&…

JAVA:利用 RabbitMQ 死信队列实现支付超时场景的技术指南

1、简述 在支付系统中&#xff0c;订单支付的超时自动撤销是一个非常常见的业务场景。通常用户未在规定时间内完成支付&#xff0c;系统会自动取消订单&#xff0c;释放相应的资源。本文将通过利用 RabbitMQ 的 死信队列&#xff08;Dead Letter Queue, DLQ&#xff09;来实现…

特制一个自己的UI库,只用CSS、图标、emoji图 第二版

图&#xff1a; 代码&#xff1a; index.html <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>M…

1.14 互斥与同步

1.思维导图 2.有一个隧道&#xff0c;长1000m&#xff0c;有一辆高铁&#xff0c;每秒100米&#xff1b;有一辆快车&#xff0c;每秒50米&#xff1b;要求模拟这两列火车通过隧道的场景。 1>程序代码&#xff1a; #include <stdio.h> #include <string.h> #i…

solidity基础 -- 枚举

在智能合约开发领域&#xff0c;Solidity语言因其简洁高效而被广泛使用。其中&#xff0c;枚举&#xff08;enum&#xff09;作为一种特殊的数据类型&#xff0c;为合约的状态管理提供了极大的便利。本文将通过一个具体的Solidity合约示例&#xff0c;深入探讨枚举的定义、使用…

14.STM32F407ZGT6-SPI

参考&#xff1a; 1.正点原子 前言&#xff1a; SPI一般用在中高速的外围器件上&#xff0c;如FLASH, GPS模块等。很常用的一种通信方式&#xff0c;学习总结很有必要。 1.SPI的概念及时序。 2.通过SPI操作Flash芯片。 37.1 SPI 及 NOR Flash 介绍 37.1.1 SPI 介绍 我们将从…

基于SpringBoot的中华诗词赏析文化交流平台

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

44.ComboBox的数据绑定 C#例子 WPF例子

固定最简步骤&#xff0c;包括 XAML&#xff1a; 题头里引入命名空间 标题下面引入类 combobox绑定资源属性和选择属性&#xff0c;block则绑定和combobox一样的选择属性 C#&#xff1a; 通知的类&#xff0c;及对应固定的任务 引入字段 引入属性 其中资源是只读的 选…

Flink类加载机制详解

1. 总览 在运行Flink应用时,它会加载各种类,另外我们用户代码也会引入依赖,由于他们依赖版本以及加载顺序等不同,就可能会导致冲突,所以很要必要了解Flink是如何加载类的。 根据加载的来源的不同,我们可以将类分为三种: Java Classpath:Java类路径下,这是Java通用的…

水下通信:特点、主要应用与典型系统

引言 海洋覆盖了地球表面的71%&#xff0c;是地球上最大的生态系统。随着人类对海洋资源的不断探索和开发&#xff0c;水下通信成为了连接水下设备与陆上控制中心、实现水下数据交换和远程监控的关键技术。水下通信不仅在水下科研、资源开发、环境监测、水下救援等领域发挥着重…

GPU算力平台|在GPU算力平台部署Qwen-2通义千问大模型的教程

文章目录 一、GPU平台介绍算力平台概述 二、人工智能应用开发需要GPU算力平台GPU算力原理账号注册流程Qwen-2通义千问大模型的部署登录/注册选择SettingsURL配置选择模型部署完成进行问答 一、GPU平台介绍 算力平台概述 GPU算力平台是一个专注于GPU加速计算的专业云服务平台&…

“深入浅出”系列之设计模式篇:(0)什么是设计模式

设计模式六大原则 1. 单一职责原则&#xff1a;一个类或者一个方法只负责一项职责&#xff0c;尽量做到类的只有一个行为原因引起变化。 核心思想&#xff1a;控制类的粒度大小&#xff0c;将对象解耦&#xff0c;提高其内聚性。 2. 开闭原则&#xff1a;对扩展开放&#xf…

微信小程序集成Vant Weapp移动端开发的框架

什么是Vant Weapp Vant 是一个轻量、可靠的移动端组件库&#xff0c;于 2017 年开源。 目前 Vant 官方提供了 Vue 2 版本、Vue 3 版本和微信小程序版本&#xff0c;并由社区团队维护 React 版本和支付宝小程序版本。 官网地睛&#xff1a;介绍 - Vant Weapp (vant-ui.gith…

【C++】:浅析 std::optional

std::optional 是 C17 引入的一个标准库特性&#xff0c;提供了一种简单的方式来表示一个可能存在或不存在的值。它可以用于替代指针或其他机制&#xff0c;以更安全和更清晰的方式处理可选值。 1. 基本概念 std::optional<T> 是一个模板类&#xff0c;其中 T 是存储的…

图形和动画本地化

图形和动画本地化是多媒体改编的一个关键方面&#xff0c;需要对技术技能和文化细微差别有深入的理解。当由母语人士和设计师进行时&#xff0c;这一过程达到了自动化系统通常无法复制的真实性和相关性水平。 本土专业人士对文化偏好、象征主义和视觉美学有着固有的理解&#…

浅谈云计算06 | 云管理系统架构

云管理系统架构 一、云管理系统架构&#xff08;一&#xff09;远程管理系统&#xff08;二&#xff09;资源管理系统&#xff08;三&#xff09;SLA 管理系统&#xff08;四&#xff09;计费管理系统 二、安全与可靠性保障&#xff08;一&#xff09;数据安全防线&#xff08;…