Copula算法原理和R语言股市收益率相依性可视化分析

阅读全文:http://tecdat.cn/?p=6193

copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它点击文末“阅读原文”获取完整代码数据

视频:Copula算法原理和R语言股市收益率相依性可视化分析


为什么要引入Copula函数?

当边缘分布(即每个随机变量的分布)不同的随机变量,互相之间并不独立的时候,此时对于联合分布的建模会变得十分困难。

52f79515b0ca45177b999429c83d5f71.png

让我们从一个示例问题案例开始。假设我们测量两个非正态分布且相关的变量。例如,我们查看各种河流,我们查看该河流在特定时间段内的最高水位。此外,我们还计算了每条河流造成洪水的月份。对于河流最高水位的概率分布,我们可以参考极值理论,它告诉我们最大值是Gumbel分布的。洪水发生的次数将根据Beta分布进行建模,该分布只是告诉我们发生洪水的概率是洪水与非洪水发生次数的函数。

假设洪水的最高水位和数量是相关的,这是非常合理的。然而,这里我们遇到了一个问题:我们应该如何对概率分布进行建模?上面我们只指定了各个变量的分布,而与另一个变量无关(即边缘分布)。实际上,我们正在处理这两者的联合分布。

此时,在已知多个已知 边缘分布的随机变量下,Copula函数则是一个非常好的工具来对其相关性进行建模。

3fb274bd3adc0b00fc708fb4999aaf2c.png

copula 的主要吸引力在于,通过使用他们,您可以分别对相关结构和边缘分布(即每个随机变量的分布)进行建模。

5dce843aaf7a1fb10f65b69be3f9c072.png

因为对于某些边缘分布组合,没有内置函数来生成所需的多元分布。例如,在 R 中,很容易从多元正态分布中生成随机样本,但是对于边缘分别为 Beta、Gamma 和 Student 的分布来说,这样做并不容易。

copula 将边缘分布与研究它们的“关系”分开,因此您无需担心考虑可能的单变量分布类型的所有可能组合,从而大大简化了所需的代码量。

Copula可以同时处理多个变量,例如您可以在一个群组中处理多只股票,而不仅仅是一对,以创建最终交易组合,以在更高的维度上发现错误定价。

什么是copula

Copula 在拉丁语中的意思是“链接”,copula 是将多元分布函数与其边缘分布函数耦合的函数,通常称为边缘或简称为边缘。Copulas 是用于建模和模拟相关随机变量的绝佳工具。

总的来说,copula 是一种统计方法,用于理解多元分布的联合概率。

Copula是模拟多元相关数据的流行方法,是一个表示多元均匀分布的概率模型,它检查许多变量之间的关联或依赖关系。

今天,copulas 被用于高级财务分析,以更好地理解涉及厚尾和偏度的结果。用于帮助识别市场风险、信用风险和操作风险。它依赖于两种或多种资产收益的相互依赖关系。相关性最适合 正态分布,而金融市场中的分布本质上通常是非正态分布。因此,copula 已应用于诸如期权定价和投资组合风险价值等金融领域,以处理偏斜或不对称分布。

2b33daaac1228f3fa4a0b977c4bed295.png

如何使用copula 分析数据

回想一下,您可以使用累积分布函数将任何分布转换为均匀分布。同样,您可以使用逆累积分布函数将均匀分布转换为任何分布。例如要模拟来自高斯 copula 的相关多元数据,请执行以下三个步骤:

1.从相关矩阵模拟相关的多元正态数据。边缘分布都是标准正态分布。

2.使用标准正态累积分布函数将正态边缘转换为均匀分布。

3.使用逆累积分布函数将均匀边缘分布转换为 您想要的任何分布。

第二步和第三步中的转换是在数据矩阵的各个列上执行的。变换是单调的,这意味着它们不会改变列之间的等级相关性。因此,最终数据与第一步中的多元正态数据具有相同的秩相关性。

首先我们可以生成均匀分布的随机变量

下面,我们想要转化这些样本使他们变成正态分布。那么,我们只需要以 x为累积分布函数值,对正态分布求逆即可,

8b9d64e44ff009adcddc809373c7ac65.png

如果我们将 x 和转化后的x  的分布画在一张图中,就可以直观的看出逆累积分布函数的样子。

89ad293f20a738b053ab573646a05c04.png

同理,我们也可以基于 beta 分布或者gumbel  分布来得到类似的图像,这种概率积分变换的本质是相同的。

而我们如果想要从一个任意的分布到均匀分布,那么我们只需要进行一次累积分布函数就可以了。这里我将 转换后的x 再做一次转化

3651e51bf7335c4dd343e0e13f4648d5.png

简单的高斯Copula例子

我们构建一个简单的例子,来看如何利用概率积分变换来认识高斯copula。首先从二元正态分布中生成样本:

fb94bf38052587f348980eb50db8cb67.png

通过给 x1和x2的累积分布函数进行采样,我们可以将其转化成均匀分布。

87dc6c72522312e466cef1e43c37af05.png

现在,我们在上面的基础上(构建的高斯Copula函数),把边缘分布换成Beta分布和Gumbel分布:

f9f9e2c5267b35ecb518d67cf1d9be83.png

那如果没有二者的耦合关系,这个图是怎样的呢?

c4ff4bb659d9f591bce293561a858a0f.png

两张图对比一下,还是很容易看出区别的吧!这就是我们使用copula函数内在的方法了,其核心还是通过均匀分布。

Copula的数学定义

它是一个多元分布C,边缘分布为均匀分布。它实际上只是一个具有均匀分布边缘属性的函数。它确实只有在与另一个变换结合以获得我们想要的边缘分布时才有用。

e5338d48ca1f97a80c8b8dbd6484b83a.png

我们也可以更好地理解高斯 copula 的数学描述:

对于给定的R, 具有参数矩阵的高斯copula可以写成   ,其中Φ− 1是标准正态的逆累积分布函数,并且ΦR是平均向量为零且协方差矩阵等于相关矩阵的多元正态分布的联合累积分布函数R.

请注意,在上面的例子中,我们采用相反的方式从该分布创建样本。此处表示的高斯 copula 采用 均匀分布输入,将它们转换为高斯,然后应用相关性并将它们转换回均匀分布。

Copula函数主要应用在哪里呢?

该工具最初是用在金融衍生品领域,该函数建模作为衍生品风险度量的工作进行使用。在2008年金融危机中,这个工具被人广泛的提及,认为当时采用的高斯copula没有能够完整度量衍生品连带之间的风险,从而导致一系列的违约,进而引发次贷危机、经济危机。

也有人事后写了文章来介绍这个工具和现实社会经济的关系,包括很有名的电影《大空头》,也有这段的描写。

说回工具本身,除了金融领域,现在很多研究概率分布的领域都在使用copula,例如电力系统领域研究风电、光伏等间歇性能源,也在使用这种方法进行建模。

接下来我们在R软件中对金融时间序列进行copula建模。

copulas如何工作 

首先,让我们了解copula的工作方式。

set.seed(100)m < -  3
n < -  2000z < -  mvrnorm(n,mu = rep(0,m),Sigma = sigma,empirical = T)

我们使用cor()和散点图矩阵检查样本相关性。

pairs.panels(Z)\[,1\] \[,2\] \[,3\]
\[1,\] 1.0000000 0.3812244 0.1937548
\[2,\] 0.3812244 1.0000000 -0.7890814
\[3,\] 0.1937548 -0.7890814 1.0000000

abb02955cca03aceedf7af26569ea84b.png

pairs.panels(U)

这是包含新随机变量的散点图矩阵u。 


点击标题查阅往期内容

feb69ba502c939503f4841c4aca001eb.jpeg

R语言多元Copula GARCH 模型时间序列预测

outside_default.png

左右滑动查看更多

outside_default.png

01

c2df0be36802420e9fcbf35e0564f282.jpeg

02

f7f17a87be1ad822ebb3cfcfb01df5fc.jpeg

03

51d0b51c665f81a7986fc965a59753dc.jpeg

04

bf9d8caa242eee0a7b18d9e4afb8d9f2.jpeg

0e1d6f2ba174f950288bef53a5b010d3.png

我们可以绘制矢量的3D图表示u。 

def2d03e6655a268a1a59e2afe8c3e48.png

现在,作为最后一步,我们只需要选择边缘并应用它。我选择了边缘为Gamma,Beta和Student,并使用下面指定的参数。

x1 < -  qgamma(u \[,1\],shape = 2,scale = 1)
x2 < -  qbeta(u \[,2\],2,2)
x3 < -  qt(u \[,3\],df = 5)

下面是我们模拟数据的3D图。 

e086e568d4bed7d6e7ed7b255ed7b881.png

df < -  cbind(x1,x2,x3)
pairs.panels(DF)x1 x2 x3
x1 1.0000000 0.3812244 0.1937548
x2 0.3812244 1.0000000 -0.7890814
x3 0.1937548 -0.7890814 1.0000000

这是随机变量的散点图矩阵:

f3c334aeadb88aa30e30cc3b03b88450.png

使用copula

让我们使用copula复制上面的过程。

现在我们已经通过copula(普通copula)指定了相依结构并设置了边缘,mvdc()函数生成了所需的分布。然后我们可以使用rmvdc()函数生成随机样本。

colnames(Z2)< -  c(“x1”,“x2”,“x3”)
pairs.panels(Z2)

模拟数据当然非常接近之前的数据,显示在下面的散点图矩阵中:

5b9263010efacfd65efdff82ef3717a2.png

简单的应用示例

现在为现实世界的例子。我们将拟合两个股票 ,并尝试使用copula模拟 。 

让我们在R中加载 :

cree < -  read.csv('cree_r.csv',header = F)$ V2
yahoo < -  read.csv('yahoo_r.csv',header = F)$ V2

在直接进入copula拟合过程之前,让我们检查两个股票收益之间的相关性并绘制回归线:

我们可以看到 正相关 :

e06524fbfe691d358ccc7177b50cdd47.png

在上面的第一个例子中,我选择了一个正态的copula模型,但是,当将这些模型应用于实际数据时,应该仔细考虑哪些更适合数据。例如,许多copula更适合建模非对称相关,其他强调尾部相关性等等。我对股票收益率的猜测是,t-copula应该没问题,但是猜测肯定是不够的。本质上, 允许我们通过函数使用BIC和AIC执行copula选择 :

pobs(as.matrix(cbind(cree,yahoo)))\[,1\]selectedCopula$ PAR
\[1\] 0.4356302$ PAR2
\[1\] 3.844534

拟合算法确实选择了t-copula并为我们估计了参数。 
让我们尝试拟合建议的模型,并检查参数拟合。

t.cop  
set.seed(500)
m < -  pobs(as.matrix(cbind(cree,yahoo)))COEF(FIT)rho.1 df 
0.43563 3.84453

我们来看看我们刚估计的copula的密度

rho < -  coef(fit)\[1\]
df < -  coef(fit)\[2\]

2b959b2dc9437431d01c2adee9b45489.png

现在我们只需要建立Copula并从中抽取3965个随机样本。

rCopula(3965,tCopula(  = 2, ,df = df))\[,1\] \[,2\]
\[1,\] 1.0000000 0.3972454
\[2,\] 0.3972454 1.0000000

这是包含的样本的图:

96fe56889729bb5c15553575f0b7d634.png

t-copula通常适用于在极值(分布的尾部)中存在高度相关性的现象。
现在我们面临困难:对边缘进行建模。为简单起见,我们将假设正态分布 。因此,我们估计边缘的参数。

直方图显示如下:

fedb220ea8a3f98aee5c4364416538be.png

4956312cf24dcb79388e860b58fea033.png

现在我们在函数中应用copula,从生成的多变量分布中获取模拟观测值。最后,我们将模拟结果与原始数据进行比较。

这是在假设正态分布边缘和相依结构的t-copula的情况下数据的最终散点图:

e4f0188738d9d8e134dcf4b78054b39d.png

正如您所看到的,t-copula导致结果接近实际观察结果 。 

让我们尝试df=1df=8:

显然,该参数df对于确定分布的形状非常重要。随着df增加,t-copula倾向于正态分布copula。

3a21f115808d3eca86a882988cce2a15.png

1e98471e4a14bd1e4f21f599e7ca4962.jpeg

本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 

5284f2669305073d65db57febc4884a3.png


1bacba8dd636ea1b23b78bb0ed6235c8.jpeg

本文摘选R语言实现 Copula 算法建模相依性案例分析报告,点击“阅读原文”获取全文完整资料。

fd943323bad8603c7b82a89e6f07e5e3.jpeg

28e92daf732fd1a1b9bd61e8301882c7.png

点击标题查阅往期内容

Copula估计边缘分布模拟收益率计算投资组合风险价值VaR与期望损失ES

MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析

python中的copula:Frank、Clayton和Gumbel copula模型估计与可视化

R语言中的copula GARCH模型拟合时间序列并模拟分析

matlab使用Copula仿真优化市场风险数据VaR分析

R语言多元Copula GARCH 模型时间序列预测

R语言Copula函数股市相关性建模:模拟Random Walk(随机游走)

R语言实现 Copula 算法建模依赖性案例分析报告

R语言ARMA-GARCH-COPULA模型和金融时间序列案例

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言COPULA和金融时间序列案例

matlab使用Copula仿真优化市场风险数据VaR分析

matlab使用Copula仿真优化市场风险

R语言多元CopulaGARCH模型时间序列预测

R语言Copula的贝叶斯非参数MCMC估计

R语言COPULAS和金融时间序列

R语言乘法GARCH模型对高频交易数据进行波动性预测

R语言GARCH-DCC模型和DCC(MVT)建模估计

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

R语言时间序列GARCH模型分析股市波动率

R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略

R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模

R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析

R语言多元Copula GARCH 模型时间序列预测

R语言使用多元AR-GARCH模型衡量市场风险

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

R语言用Garch模型和回归模型对股票价格分析

GARCH(1,1),MA以及历史模拟法的VaR比较

matlab估计arma garch 条件均值和方差模型

R语言ARMA-GARCH-COPULA模型和金融时间序列案例

96d19df54f93a1e1dec3793bdc18b2bc.png

0a1cf2c541f5d2fa54098a5f91c79509.jpeg

f9a1935ffc86640a875918802f2a2c43.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892503.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DSP+Simulink——点亮LED灯(TMSDSP28379D)超详细

实现功能&#xff1a;DSP28379D-LED灯闪烁 :matlab为2019a :环境建立见之前文章 Matlab2019a安装C2000 Processors超详细过程 matlab官网链接&#xff1a; Getting Started with Embedded Coder Support Package for Texas Instruments C2000 Processors Overview of Creat…

APP上架之Android 证书 MD5 指纹

Android 证书 MD5 指纹 1. 什么是 Android 证书 MD5 指纹&#xff1f; Android 证书 MD5 指纹是对证书数据进行 MD5 哈希运算后得到的 128 位字符串。在 Android 开发中&#xff0c;每个证书在理论上都有一个唯一的 MD5 指纹&#xff0c;用于识别和验证证书的有效性。证书指纹…

【Rust自学】11.6. 控制测试运行:并行和串行(连续执行)测试

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 11.6.1. 控制测试的运行方式 cargo test和cargo run一样&#xff0c;cargo test也会编译代码并生成一个二进制文件用于测试&#xff0c;…

计算机网络学习笔记

第1课 绪论、传输介质 【知识点回顾】 两种导线可以减小电磁干扰&#xff1a; 双绞线&#xff08;分为非屏蔽双绞线、屏蔽双绞线&#xff09;&#xff08;RJ-45用&#xff09;同轴电缆&#xff08;短距离使用&#xff09;网络通信的基本单位&#xff1a;位&#xff08;bit&…

STM32之CAN通讯(十一)

STM32F407 系列文章 - CAN通讯&#xff08;十一&#xff09; 目录 前言 一、CAN 二、CAN驱动电路 三、CAN软件设计 1.CAN状态初始化 2.头文件相关定义 3.接收中断服务函数 4.用户层使用 1.用户层相关定义 2.发送数据 3.接收数据 1.查询方式处理 2.中断方式处理 3…

Java聊天小程序

拟设计一个基于 Java 技术的局域网在线聊天系统,实现客户端与服务器之间的实时通信。系统分为客户端和服务器端两类,客户端用于发送和接收消息,服务器端负责接收客户端请求并处理消息。客户端通过图形界面提供用户友好的操作界面,服务器端监听多个客户端的连接并管理消息通…

C#Halcon找线封装

利用CreateMetrologyModel封装找线工具时&#xff0c;在后期实际应用调试时容易把检测极性搞混乱&#xff0c;造成检测偏差&#xff0c;基于此&#xff0c;此Demo增加画线后检测极性的指引&#xff0c;首先看一下效果 加载测试图片 画线 确定后指引效果 找线效果 修改显示 UI代…

【linux系统之redis6】redis的基础命令使用及springboot连接redis

redis的基础命令很多&#xff0c;大部分我们都可以在官网上找到&#xff0c;真的用的时候可以去官网找&#xff0c;不用全部记住这些命令 redis通用的基础命令的使用 代码测试 string类型常见的命令 key值的结构&#xff0c;可以区分不同的需求不同的业务名字 hash类型 创建…

ISP各模块功能介绍

--------声明&#xff0c;本文为转载整理------- ISP各个模块功能介绍&#xff1a; 各模块前后效果对比&#xff1a; 黑电平补偿&#xff08;BLC&#xff09; 在理想情况下&#xff0c;没有光照射的像素点其响应值应为0。但是&#xff0c;由于杂质、受热等其它原因的影响&…

前缀和练习

【模版】前缀和 【模板】前缀和_牛客题霸_牛客网 思路 要想快速找出某一连续区间的和&#xff0c;我们就要使用前缀和算法。 其实本质是再创建一个dp数组&#xff0c;每进一次循环加上原数组的值&#xff08;dp代表arr的前n项和&#xff09;&#xff1a; vector<int>…

3. 【Vue实战--孢子记账--Web 版开发】--登录大模块

从这篇文章开始我们就进入到了孢子记账的前端开发&#xff0c;在本专栏中我默认大家的电脑上都已经配置好了开发环境。下面我们一起开始编写孢子记账的Web版吧。 一、功能 登录大模块功能包括注册、登录和找回密码功能&#xff0c;在本篇文章中我只会展示注册界面的实现&…

【2024年华为OD机试】 (A卷,100分)- 端口合并(Java JS PythonC/C++)

一、问题描述 题目描述 有 M 个端口组 (1 < M < 10)&#xff0c; 每个端口组是长度为 N 的整数数组 (1 < N < 100)&#xff0c; 如果端口组间存在 2 个及以上不同端口相同&#xff0c;则认为这 2 个端口组互相关联&#xff0c;可以合并。 输入描述 第一行输入端…

73.矩阵置零 python

矩阵置零 题目题目描述示例 1&#xff1a;示例 2&#xff1a;提示&#xff1a; 题解思路分析Python 实现代码代码解释提交结果 题目 题目描述 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例…

基于华为ENSP的OSPF状态机、工作过程、配置保姆级别详解(2)

本篇技术博文摘要 &#x1f31f; 基于华为enspOSPF状态机、OSPF工作过程、.OSPF基本配置等保姆级别具体详解步骤&#xff1b;精典图示举例说明、注意点及常见报错问题所对应的解决方法 引言 &#x1f4d8; 在这个快速发展的技术时代&#xff0c;与时俱进是每个IT人的必修课。我…

SOLID原则学习,接口隔离原则

文章目录 1. 定义2. 为什么要遵循接口隔离原则&#xff1f;3. 违反接口隔离原则的例子4. 遵循接口隔离原则的改进5. 总结 1. 定义 接口隔离原则&#xff08;Interface Segregation Principle, ISP&#xff09; 接口隔离原则是面向对象设计中的五大原则&#xff08;SOLID&#…

Jenkins-持续集成、交付、构建、部署、测试

Jenkins-持续集成、交付、构建、部署、测试 一: Jenkins 介绍1> Jenkins 概念2> Jenkins 目的3> Jenkins 特性4> Jenkins 作用 二&#xff1a;Jenkins 版本三&#xff1a;DevOps流程简述1> 持续集成&#xff08;Continuous Integration&#xff0c;CI&#xff0…

从0到机器视觉工程师(六):配置OpenCV和Qt环境

CMake配置OpenCV CMakeLists.txt文件的编写 cmake_minimum_required(VERSION 3.20) project(test_opencv LANGUAGES CXX) #寻找Opencv库 FIND_PACKAGE(OpenCV REQUIRED) include_directories(test_opencv ${OpenCV_INCLUDE_DIRS}) add_executable(test_opencv main.cpp) TARGE…

CDA数据分析师一级经典错题知识点总结(3)

1、SEMMA 的基本思想是从样本数据开始&#xff0c;通过统计分析与可视化技术&#xff0c;发现并转换最有价值的预测变量&#xff0c;根据变量进行构建模型&#xff0c;并检验模型的可用性和准确性。【强调探索性】 2、CRISP-DM模型Cross Industry Standard Process of Data Mi…

【Uniapp-Vue3】v-for列表渲染的用法

如果我们想要重复渲染多个元素&#xff0c;就可以使用v-for进行渲染。 比如我们想要将元素渲染5次&#xff1a; 如果我们想要知道当前元素是渲染的第几个&#xff0c;可以在v-for的时候添加参数index&#xff0c;并在差值表达式中填入index&#xff1a; 则index会以0开始进行渲…

《新闻大厦抢先版》V0.18.105+Dlcs官方学习版

《新闻大厦抢先版》官方版https://pan.xunlei.com/s/VODaeUn3v-ZWVvvmUMfo5AqWA1?pwdnhpz# 建造并不断优化新闻大楼&#xff0c;保障员工权益并及时赶上周日的印刷交期&#xff01; 招募并管理不同职业以登上成功的阶梯&#xff1a;记者、摄像师、勤杂工&#xff0c;除此以外…