重新整理机器学习和神经网络框架

本篇重新梳理了人工智能(AI)、机器学习(ML)、神经网络(NN)和深度学习(DL)之间存在一定的包含关系,以下是它们的关系及各自内容,以及人工智能领域中深度学习分支对比整理。

一.包含关系

人工智能是涵盖最广的领域,它包括了所有使机器能够模拟人类智能的技术。

机器学习则是人工智能的一个子集,专注于让机器通过数据学习,而无需明确编程。

神经网络是机器学习的一个子集,受到人脑结构的启发,

而深度学习则是神经网络的一个子集,使用多层网络处理复杂任务。

人工智能⊃机器学习⊃神经网络⊃深度学习

1.人工智能(AI)

人工智能是范围最广的概念,它旨在让机器模拟人类智能,涵盖机器学习等多种实现途径。

1.1 定义: 指的是使机器能够执行通常需要人类智能的任务,如视觉感知、语言理解、决策和问题解决。

1.2 应用: 聊天机器人、推荐系统、自动驾驶汽车等。

2.机器学习(ML)

机器学习是人工智能的一个重要分支,专注于让机器从数据中学习规律并用于预测和决策。

2.1 定义: 一个子集,使机器能够通过数据学习并做出决策,而无需明确编程。

2.2 类型: 监督学习、无监督学习、强化学习等。

2.3 应用: 邮件过滤、股票交易、医疗诊断等。

3.神经网络(NN)

神经网络是机器学习中的一种模型和算法架构,由大量神经元相互连接构成。

3.1 定义: 受人脑结构启发的机器学习模型,通过节点(神经元)处理信息。

3.2 类型: 卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。

3.3 应用: 图像识别、自然语言处理、游戏AI等。

4.深度学习(DL)

深度学习则是基于神经网络发展起来的机器学习领域的一个分支,强调使用深层神经网络进行学习。

4.1 定义: 使用多层神经网络处理复杂任务,如识别图像中的对象或理解自然语言。

4.2 特点: 自动特征提取、端到端学习等。

4.3 应用: 语音识别、机器翻译、医疗图像分析等。

二.各概念的具体内容

2.1 人工智能

2.1.1 研究内容
  • 知识表示:旨在将人类知识以计算机可处理的形式进行表达,以便机器能够理解和运用这些知识。
  • 推理与搜索:通过逻辑推理和搜索算法,使机器能够在给定的知识和条件下,推导出新的结论或找到解决问题的路径。
  • 自然语言处理:致力于让机器能够理解、生成和处理人类语言,实现人机之间自然流畅的语言交互。
  • 计算机视觉:研究如何让机器能够理解和解释图像、视频等视觉信息,如同人类视觉系统一样识别物体、场景等。
  • 机器人学:融合机械工程、电子技术、计算机科学等多学科知识,设计和开发能够自主执行任务的机器人。
2.1.2 实现方法
  • 符号主义:基于逻辑推理和符号表示,通过构建知识图谱和规则系统来实现智能。
  • 连接主义:以神经网络为基础,通过神经元之间的连接和权重调整来学习和处理信息。
  • 行为主义:强调智能体与环境的交互,通过试错学习和反馈机制来实现智能行为。
2.1.3 应用领域

广泛应用于智能交通(如自动驾驶、交通流量优化)、医疗诊断(辅助疾病诊断、药物研发)、金融风险预测(信用评估、市场趋势预测)等众多领域。

2.2 机器学习

2.2.1 学习类型
  • 监督学习:利用带有标记(标签)的数据进行模型训练。例如回归分析,用于预测连续型数值,如房价预测;分类算法,用于将数据划分到不同类别,如垃圾邮件分类。
  • 无监督学习:处理没有标记的数据,旨在发现数据中的内在结构和模式。像聚类分析,将数据点划分为不同的簇,使同一簇内的数据点具有相似性;降维算法,在保留数据主要特征的前提下,降低数据的维度,如主成分分析(PCA)。
  • 强化学习:智能体在与环境的交互过程中,通过不断尝试不同的行动并根据环境反馈的奖励信号来学习最优策略。例如,机器人在复杂环境中的导航、游戏中的智能决策等。
2.2.2 其他关键内容
  • 模型评估与选择:使用各种评估指标(如准确率、召回率、均方误差等)来衡量模型的性能,并从多个候选模型中选择最优的模型。
  • 特征工程:对原始数据进行处理和转换,提取、选择和构建对模型学习有帮助的特征,以提高模型的性能和效果。
2.2.3 应用场景

常用于数据挖掘(从大量数据中发现有价值的信息和模式)、推荐系统(根据用户的历史行为和偏好,为用户推荐相关的产品或内容)等方面。

2.3 神经网络

2.3.1 核心组成
  • 神经元模型:模拟生物神经元的信息处理方式,每个神经元接收多个输入信号,通过加权求和并经过激活函数处理后产生输出。
  • 网络结构
    • 前馈神经网络:数据从输入层依次向前传递到隐藏层和输出层,各层之间单向连接,不存在反馈连接。
    • 反馈神经网络:网络中存在反馈连接,使得神经元的输出可以反馈到输入,常用于处理动态系统和时间序列数据。
  • 学习算法:误差反向传播算法(BP 算法)是神经网络中常用的学习算法,用于调整网络权重,使网络输出尽可能接近预期输出。
2.3.2 应用领域

应用于图像识别(如人脸识别、物体检测)、语音识别(语音转文字、语音指令识别)等领域。

2.4 深度学习

2.4.1 深度神经网络架构
  • 卷积神经网络(CNN):擅长处理图像等网格数据,通过卷积层、池化层等结构自动提取数据的特征,在图像分类、目标检测等任务中表现出色。
  • 循环神经网络(RNN)及变体 LSTM、GRU:适用于处理序列数据,能够捕捉序列中的时间依赖关系。RNN 的变体 LSTM(长短期记忆网络)和 GRU(门控循环单元)解决了传统 RNN 在处理长序列时的梯度消失或爆炸问题,在文本处理(如机器翻译、文本生成)、语音处理等领域广泛应用。
  • 生成对抗网络(GAN):由生成器和判别器组成,通过两者的对抗训练,生成器能够生成新的数据样本,如生成逼真的图像、音频等,在图像生成、数据增强等方面有重要应用。
2.4.2 应用领域

应用于图像生成(如生成艺术作品、虚拟场景)、机器翻译(不同语言之间的文本翻译)、自动驾驶(环境感知、决策规划)等前沿领域。

三.人工智能领域中深度学习分支整理对比

1.深度学习分支整理

下表中整理出人工智能领域中深度学习分支的各个对比,除了注意力机制强化学习中的深度神经网络,其余都属于深度学习分支下特定类型的神经网络.

序号难易程度名称简写适用范围核心概念应用原理特点优势局限性
1基础多层感知机(Multi-Layer Perceptron)MLP简单的分类和回归问题全连接层,通过线性组合和非线性激活函数进行计算图像分类、房价预测等基于多层神经元的计算和传播简单直观,计算效率较高结构简单,易于理解和实现容易过拟合,对于复杂数据表达能力有限
2中等卷积神经网络(Convolutional Neural Network)CNN图像识别、目标检测卷积核,局部感受野,参数共享图像识别、目标检测通过卷积和池化提取特征局部感知性,参数共享,多层次特征提取,平移不变性对图像等具有空间结构的数据处理效果好,计算效率高对于序列数据等非空间结构数据表现一般
3中等循环神经网络(Recurrent Neural Network)RNN自然语言处理、语音识别循环单元,记忆历史信息自然语言处理、语音识别根据历史信息进行预测利用循环结构捕捉序列依赖擅长处理序列数据存在长期依赖问题,梯度消失或爆炸
4中等门控循环单元(Gate Recurrent Unit)GRU与RNN类似的序列任务更新门和重置门控制信息流动与RNN类似的序列任务优化了RNN的门控机制计算效率较高,性能较好比LSTM结构简单,一定程度解决长期依赖问题对非常长的序列处理能力仍有限
5较难长短时记忆网络(Long Short-Term Memory)LSTM长时间序列预测输入门、遗忘门、输出门长时间序列预测通过复杂的门控机制控制信息对长序列记忆能力强有效解决长期依赖问题参数较多,计算复杂度高
6较难变分自编码器(Variational Autoencoder)VAE数据生成、压缩变分推断,潜在变量建模图像生成、特征提取基于概率模型的生成和重构能学习数据的潜在表示生成新的数据,能进行数据压缩生成质量可能不如其他生成模型
7较难生成对抗网络(Generative Adversarial Network)GAN图像生成、数据增强生成器与判别器的对抗训练图像创作、提高数据质量对抗博弈生成数据生成效果逼真但不稳定生成逼真的数据训练不稳定,模式崩溃问题
8较难注意力机制(Attention Mechanism)Attention自然语言处理、计算机视觉根据重要性分配权重机器翻译、图像分类根据权重分配关注重点提高模型的针对性和效率聚焦关键信息,提升模型性能计算开销可能较大
9较难图神经网络(Graph Neural Network)GNN社交网络分析、化学分子结构节点和边的特征学习,消息传递节点分类、链路预测基于图的信息传播和学习适应图结构数据的处理处理图结构数据对大规模图数据计算复杂度高
10高级强化学习中的深度神经网络(Deep Neural Network in Reinforcement Learning)RL-DNN游戏策略、机器人控制策略网络,值函数估计智能决策、优化控制通过与环境交互学习策略适应复杂的动态决策环境能够在动态环境中学习最优策略训练难度大,样本效率低

2.再进行细化分类

序号类别名称简写难易程度适用范围核心概念应用原理特点优势局限性案例
1神经网络(深度学习基础模型)多层感知机(Multi - Layer Perceptron)MLP较易理解和基础简单数据的分类与回归任务,如手写数字识别的初步尝试通过全连接层,将上一层所有神经元与下一层神经元相连,学习输入与输出间的非线性映射简单的数据分类、回归,如预测产品销量前向传播计算输出,反向传播计算误差并更新权重结构简单,全连接方式直观易于实现和训练,可处理非线性问题参数众多易过拟合,难以处理复杂结构数据,对数据的特征工程要求较高,且计算量随输入维度增加而剧增预测某地区房屋价格,根据房屋面积、房间数量等简单特征进行回归分析
2神经网络(深度学习基础模型)卷积神经网络(Convolutional Neural Network)CNN中等,需理解卷积运算处理具有网格结构数据,如图像、音频、视频利用卷积核在数据上滑动进行卷积操作,提取局部特征,池化层进行特征压缩图像识别、目标检测、语义分割、语音识别卷积层提取特征,池化层降低数据维度,全连接层完成分类或回归局部连接、权重共享、池化降维减少参数计算量,对平移、旋转等变换有不变性难以捕捉全局特征,对非结构化数据处理能力弱,模型的可解释性较差识别手写数字图像,对猫和狗的图片进行分类
3神经网络(深度学习基础模型)循环神经网络(Recurrent Neural Network)RNN中等,需理解时间序列处理序列数据处理,如自然语言文本、时间序列预测通过隐藏层的反馈连接,让网络记住之前时间步的信息,处理序列依赖关系自然语言处理(如文本分类、情感分析)、时间序列预测(如股价预测)在每个时间步接收输入和上一时刻隐藏状态,更新隐藏状态并输出能处理序列数据,理论上可捕捉长时依赖适用于动态序列建模梯度消失或爆炸问题,难以学习长期依赖,训练效率较低预测股票价格走势,根据前几天的股价预测未来股价
4神经网络(深度学习基础模型)门控循环单元(Gate Recurrent Unit)GRU较难,涉及门控机制理解长序列数据处理,如自然语言处理、语音识别引入重置门和更新门,控制信息的流入与遗忘,改进 RNN 对长序列处理能力自然语言处理中的机器翻译、语音识别中的语音转文字根据重置门和更新门计算候选隐藏状态,更新隐藏状态计算量小,训练速度快解决 RNN 梯度问题,更好捕捉长时依赖相比 LSTM,复杂任务表现稍弱,对复杂时间序列中的长期依赖捕捉能力仍有限在机器翻译任务中,将一种语言的句子翻译成另一种语言
5神经网络(深度学习基础模型)长短时记忆网络(Long Short - Term Memory)LSTM较难,门控机制更复杂长序列数据处理,如自然语言处理、时间序列预测输入门、遗忘门和输出门协同工作,选择性记忆和遗忘信息,解决长时依赖自然语言处理(如文本生成、命名实体识别)、时间序列预测(如电力负荷预测)输入门控制新信息流入,遗忘门决定保留或丢弃旧信息,输出门确定输出值门控机制强大,能有效处理长序列解决长时依赖问题,在复杂序列任务中表现出色结构复杂,训练时间长,计算量大,内存占用较多预测电力系统的负荷需求,根据历史电力消耗数据进行预测
6神经网络(深度学习生成模型)变分自编码器(Variational Autoencoder)VAE较难,涉及概率与生成模型数据生成、降维、异常检测等,如图像生成、数据压缩基于变分推断,将输入编码到潜在空间,再从潜在空间解码生成新数据图像生成、数据降维、异常检测编码器将输入映射到潜在空间分布,解码器从潜在空间采样生成数据生成数据具有连续性和多样性可对潜在空间操作,生成新数据样本生成样本细节可能不足,生成质量评估难,对潜在空间的分布假设较为敏感生成新的人脸图像,通过对大量人脸图像学习后生成类似但不同的人脸
7神经网络(深度学习生成模型)生成对抗网络(Generative Adversarial Network)GAN较难,涉及对抗博弈思想数据生成、图像编辑、无监督学习等,如生成逼真图像、风格迁移生成器和判别器相互对抗,生成器生成数据,判别器判断数据真伪图像生成、图像编辑、数据增强、半监督学习生成器尽量生成逼真数据欺骗判别器,判别器尽量识别假数据,两者在对抗中提升可生成逼真数据,在无监督学习表现出色训练不稳定,易模式坍塌,难以评估生成质量,训练过程需要精心调参生成逼真的风景图片,或者将一种绘画风格迁移到另一张图片上
8深度学习架构改进技术基于注意力机制的模型(Attention Mechanism)-较难,需理解注意力机制原理多种任务,尤其是处理长序列数据,如自然语言处理、图像描述生成为不同输入部分动态分配重要性权重,聚焦关键信息机器翻译、图像字幕生成、语音识别计算输入各部分的注意力分数,据此调整信息传递能够自适应关注输入的不同部分提升对关键信息的捕捉能力,在复杂任务中表现优异计算量增加,注意力机制设计不当可能影响效果,对模型的超参数设置较为敏感在机器翻译中,使模型更关注源语言句子中与目标翻译相关的部分
9深度学习架构改进技术图神经网络(Graph Neural Network)GNN较难,涉及图结构数据处理处理具有图结构的数据,如社交网络分析、分子结构预测、知识图谱推理对图中的节点和边进行特征学习,考虑节点间的连接关系社交网络分析(节点分类、链接预测)、化学分子性质预测、推荐系统通过聚合邻居节点信息更新节点特征直接处理图结构数据,捕捉数据的拓扑结构信息能够有效利用数据的结构信息,在图数据任务中优势明显图数据的复杂性导致模型设计和训练难度较大,扩展性较差,处理大规模图数据时效率较低分析社交网络中用户之间的关系,预测用户是否会成为好友
10深度学习与强化学习结合深度强化学习模型(Deep Neural Network in Reinforcement Learning)-难,涉及强化学习原理和深度神经网络应用机器人控制、游戏、自动驾驶等复杂决策任务结合深度学习的感知能力和强化学习的决策能力,通过与环境交互学习最优策略机器人导航、游戏智能体训练、自动驾驶决策智能体在环境中执行动作,根据奖励反馈调整策略,利用深度神经网络近似价值函数或策略函数可以处理高维复杂状态空间和动作空间能够在复杂环境中学习到高效的决策策略训练过程不稳定,需要大量的环境交互数据,收敛困难,对环境建模要求高,容易陷入局部最优解训练智能机器人在复杂环境中自主导航,或者训练游戏角色在游戏中取得高分
11深度学习基础模型拓展胶囊网络(Capsule Network)-较难,需理解新的神经元结构图像识别、姿态估计等任务,尤其对视角变化、遮挡等情况敏感的场景使用胶囊(一组神经元)来表示实体的各种属性,通过动态路由机制传递信息图像分类、目标检测、三维物体重建胶囊之间通过迭代的动态路由算法,将低层次胶囊的输出传递到高层次胶囊,以更好地捕捉数据中的空间层次关系能够处理数据的空间层次结构,对变换和遮挡更鲁棒训练难度较大,动态路由算法计算成本较高,模型的收敛速度较慢,对硬件要求较高在识别不同角度拍摄的物体图像时,胶囊网络能更好地处理视角变化问题
12深度学习基础模型拓展自注意力网络(Self - Attention Network)-较难,需深入理解注意力机制多种自然语言处理任务,如文本摘要、情感分析,以及图像、音频处理等在序列数据中,每个位置的元素通过计算与其他所有位置元素的关联程度来获取上下文信息文本生成、机器翻译、图像生成通过计算输入序列中各元素之间的注意力分数,得到加权表示,从而捕捉长距离依赖关系可以直接捕捉序列中长距离依赖关系,不依赖于循环或卷积结构计算复杂度较高,对于长序列计算量剧增,在处理短序列时优势不明显在文本生成任务中,模型能更好地捕捉文本前后的语义关联
13深度学习生成模型拓展流模型(Flow - based Model)-难,涉及复杂的数学变换数据生成、密度估计等任务,如生成高分辨率图像、音频合成通过一系列可逆变换将简单分布(如高斯分布)逐步转换为与数据分布匹配的复杂分布图像生成、音频生成、异常检测构建可逆变换的神经网络,通过变换的组合将噪声数据映射到与真实数据相似的分布精确的密度估计,生成样本质量较高,可进行高效的采样和反演设计复杂的可逆变换较为困难,计算成本较高,对数据的分布假设较为严格生成高质量的音乐片段,通过对大量音乐数据学习后生成新的音乐
14深度学习与其他领域结合对抗自编码器(Adversarial Autoencoder)AAE较难,结合生成对抗与自编码器概念数据生成、半监督学习、无监督特征学习等结合自编码器的编码解码结构和生成对抗网络的对抗训练机制,使编码器生成的特征符合某种先验分布图像生成、数据降维、半监督分类自编码器将输入编码为特征,生成器根据特征生成数据,判别器区分生成数据与真实数据,同时约束编码器使特征符合先验能够学习到具有语义信息的特征表示,在半监督学习中表现良好训练过程复杂,需要平衡自编码器和对抗网络的训练,对超参数敏感,模型稳定性较差在半监督图像分类任务中,利用少量标记数据和大量未标记数据进行分类
15深度学习与其他领域结合深度信念网络(Deep Belief Network)DBN较难,涉及逐层训练和无监督预训练图像识别、语音识别、协同过滤等任务由多个受限玻尔兹曼机(RBM)堆叠而成,通过无监督预训练和有监督微调的方式进行学习手写数字识别、推荐系统首先利用无监督学习对每一层 RBM 进行预训练,然后使用有监督学习对整个网络进行微调能够有效处理高维数据,在无监督学习和有监督学习之间架起桥梁训练时间长,模型参数较多,调参复杂,对硬件资源要求高在推荐系统中,根据用户的历史行为数据为用户推荐可能感兴趣的商品

由于篇幅较长且整理过程较为繁琐,我计划逐步整理并发布后续内容。我深信,科技应当服务于大众,我希望可以为促进知识的共享与学习,贡献自己绵薄之力,根据我的整理节省后来人的时间。此外补充一下,开源才是未来趋势和大方向,还有一件事 各位新年快乐!2025年事事顺心,万事如意 ,迎接全新的人生!如果对神经网络感兴趣,可以看之前相关博客 

​​​​​​​

深度学习笔记1:自动微分与神经网络实现(附代码)_神经网络自动微分-CSDN博客

整理不易,诚望各位看官点赞 收藏 评论 予以支持,这将成为我持续更新的动力源泉。若您在阅览时存有异议或建议,敬请留言指正批评,让我们携手共同学习,共同进取,吾辈自当相互勉励!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW瞬变电磁接收系统

利用LabVIEW软件与USB4432采集卡开发瞬变电磁接收系统。系统通过改进硬件配置与软件编程,解决了传统仪器在信噪比低和抗干扰能力差的问题,实现了高精度的数据采集和处理,特别适用于地质勘探等领域。 ​ 项目背景: 瞬变电磁法是探…

Redis 优化秒杀(异步秒杀)

目录 为什么需要异步秒杀 异步优化的核心逻辑是什么? 阻塞队列的特点是什么? Lua脚本在这里的作用是什么? 异步调用创建订单的具体逻辑是什么? 为什么要用代理对象proxy调用createVoucherOrder方法? 对于代码的详细…

C++笔记之`size_t`辨析

C++笔记之size_t辨析 code review! 文章目录 C++笔记之`size_t`辨析一.什么是 `size_t`?二.`size_t` 的来源和设计目的三.`size_t` 的应用场景四.`size_t` 的优点五.`size_t` 的缺点和注意事项六.`size_t` 和其他类型的比较七.总结与建议在 C/C++ 中,size_t 是一个非常重要的…

MySQL表的增删查改(下)——Update(更新),Delete(删除)

文章目录 Update将孙悟空同学的数学成绩修改为80分将曹孟德同学的数学成绩变更为 60 分,语文成绩变更为 70 分将总成绩倒数前三的 3 位同学的数学成绩加上 30 分将所有同学的语文成绩更新为原来的 2 倍 Delete删除数据删除孙悟空同学的考试成绩删除整张表数据 截断表…

大语言模型训练的数据集从哪里来?

继续上篇文章的内容说说大语言模型预训练的数据集从哪里来以及为什么互联网上的数据已经被耗尽这个说法并不专业,再谈谈大语言模型预训练数据集的优化思路。 1. GPT2使用的数据集是WebText,该数据集大概40GB,由OpenAI创建,主要内…

【hadoop学习遇见的小问题】clone克隆完之后网络连接不上问题解决

vi /etc/udev/rules.d/70-persistent-net.rules注释掉第一行 第二行的eth1 改为eth0 由上图也可以看到物理地址 记录下来在网卡中修改物理地址 vi /etc/sysconfig/network-scripts/ifcfg-eth0修改完之后 重启reboot 即可

PDFMathTranslate: Star13.8k,一款基于AI的PDF文档全文双语翻译PDF文档全文双语翻译,保留格式神器,你应该需要它

嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 PDFMathTranslate是一个开源项目,旨在为用户提供便捷的PDF科学论文翻译解决方案。它不仅能够翻译文本,还能保留公式、图表、目…

对话|全年HUD前装将超330万台,疆程技术瞄准人机交互“第一屏”

2024年,在高阶智驾进入快速上车的同时,座舱人机交互也在迎来新的增长点。Chat GPT、AR-HUD、车载投影等新配置都在带来新增量机会。 高工智能汽车研究院监测数据显示,2024年1-10月,中国市场(不含进出口)乘用…

【机器学习案列】学生抑郁可视化及预测分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…

微服务保护——Sentinel

什么是微服务保护? 微服务保护是一系列用于保障微服务架构稳定、可靠运行的策略与技术手段,在复杂的分布式微服务系统里,它能避免局部故障引发连锁反应,从而维持整个系统的可用性,主要涵盖以下几个关键部分&#xff1a…

福建双色荷花提取颜色

提取指定颜色 HSV双色荷花代码验证 参照《OpenCV图像处理技术》 HSV 要用HSV的色调、饱和度和亮度来提取指定颜色。 双色荷花 农林大学金山校区观音湖 代码 import cv2 import numpy as npimgcv2.imread("./sucai6/hua.jpg") cv2.imshow("SRC",img) h…

tdengine数据库使用java连接

1 首先给你的项目添加依赖 <dependency> <groupId>com.taosdata.jdbc</groupId> <artifactId>taos-jdbcdriver</artifactId> <version>3.4.0</version> <!-- 表示依赖不会传递 --> </dependency> 注意&am…

MIUI显示/隐藏5G开关的方法,信号弱时开启手机Wifi通话方法

5G网速虽快&#xff0c;手机功耗也大。 1.取消MIUI强制的5G&#xff0c;手动设置4G的方法&#xff01; 【小米澎湃OS, Xiaomi HyperOS显示/隐藏5G开关的方法】 1.1.小米MIUI系统升级后&#xff0c;被强制连5G&#xff0c;手动设置开关被隐藏&#xff0c;如下图&#xff1a; 1…

pikachu - Cross-Site Scripting(XSS)

pikachu - Cross-Site Scripting&#xff08;XSS&#xff09; 声明&#xff01; 笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人无关&#xff0c;切勿触碰法律底线&#xff0c;否则后果自负&#x…

部署:上传项目代码 配置数据库

一、上传代码 1、使用git 可以使用Git Clone。使用前&#xff0c;在服务器上也要创建秘钥对。这里的密钥对&#xff0c;是专门用来读取Git仓库的。 在宝塔上&#xff0c;点击终端。进来后&#xff0c;运行 ssh-keygen还是一路回车&#xff0c;密钥对就建好了。 接着用命令…

时敏软件定义网络的服务保证

论文标题&#xff1a; Service Guarantees for Time-Sensitive Software-Defined Networks作者信息&#xff1a; Weijiang Kong论文出处&#xff1a; Eindhoven University of Technology, 2025年1月20日 摘要&#xff1a; 在过去十年中&#xff0c;随着半导体技术的进步和对更…

【Linux】sed编辑器

一、基本介绍 sed编辑器也叫流编辑器&#xff08;stream editor&#xff09;&#xff0c;它是根据事先设计好得一组规则编辑数据流。 交互式文本编辑器&#xff08;如Vim&#xff09;中&#xff0c;可以用键盘命令交互式地插入、删除或替换文本数据。 sed编辑器是根据命令处理…

嵌入式入门Day40

C Day3 C对C的结构体的扩充类this指针类的大小类中的特殊成员函数构造函数 作业 C对C的结构体的扩充 C语言中的结构体&#xff0c;仅仅只是属性&#xff08;变量&#xff09;的聚合体&#xff0c;不可以在结构体中定义行为&#xff08;函数&#xff09;。如果非要在结构体中定…

《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录 2.1 几何学 向量的内积和外积 旋转矩阵 旋转向量 四元数 李群和李代数 SO(3)上的 BCH 线性近似式 2.2 运动学 李群视角下的运动学 SO(3) t 上的运动学 线速度和加速度 扰动模型和雅可比矩阵 典型算例&#xff1a;对向量进行旋转 典型算例&#xff1a;旋转的复合 2.3 …

C语言教程——指针进阶(1)

目录 前言 1、字符指针 2、指针数组 3、数组指针 3.1数组指针 3.2&数组名VS数组名 3.3数组指针的使用 4、数组参数、指针参数 4.1一维数组传参 4.2二维数组传参 4.3一级指针传参 4.4二级指针传参 4.5总结 5、函数指针 5.1思考 总结 前言 我们在之前知道指针…