GA-Kmeans-Transformer时序聚类+状态识别组合模型

创新研究亮点!GA-Kmeans-Transformer时序聚类+状态识别组合模型

目录

    • 创新研究亮点!GA-Kmeans-Transformer时序聚类+状态识别组合模型
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.创新研究亮点!GA-Kmeans-Transformer时序聚类+状态识别组合模型,运行环境Matlab2023b及以上;

2.excel数据,方便替换,先运行main1_GAKmeans对时序数据进行聚类、再运行main2_Transformer对聚类后的数据进行识别,其余为函数文件无需运行,可在下载区获取数据和程序内容,适用于交通、气象、负荷等领域。

3.图很多,包括聚类效果图、分类识别效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。
4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复GA-Kmeans-Transformer时序聚类+状态识别组合模型
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';
t_test  = categorical(T_test )';%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end%网络搭建
numChannels = num_dim;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/890787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新的强大的文生视频模型Pyramid Flow 论文阅读及复现

《PYRAMIDAL FLOW MATCHING FOR EFFICIENT VIDEO GENERATIVE MODELING》 论文地址:2410.05954https://arxiv.org/pdf/2410.05954 项目地址: jy0205/Pyramid-Flow: 用于高效视频生成建模的金字塔流匹配代码https://github.com/jy0205/Pyram…

阻塞队列BlockingQueue实战及其原理分析

1. 阻塞队列介绍 1.1 队列 是限定在一端进行插入,另一端进行删除的特殊线性表。先进先出(FIFO)线性表。允许出队的一端称为队头,允许入队的一端称为队尾。 数据结构演示网站:https://www.cs.usfca.edu/~galles/visualization/Algorithms.ht…

hadoop搭建

前言 一般企业中不会使用master slave01 slave02来命名 vmware创建虚拟机 打开vmware软件,新建虚拟机 典型 稍后安装系统 选择centos7 虚拟机名称和安放位置自行选择(最小化安装消耗空间较少) 默认磁盘大小即可 自定义硬件 选择centos7的i…

测试 - 1 ( 9000 字详解 )

一: 测试入门 测试是指运用特定的方法、手段或工具,对某一对象进行验证、检查或评估,判断其是否符合预期标准或目标。例如,修理好一盏灯后通过按开关测试其是否正常工作;通过一次数学测验评估学生对代数知识的掌握程度…

【MATLAB第110期】#保姆级教学 | 基于MATLAB的PAWN全局敏感性分析方法(无目标函数)含特征变量置信区间分析

【MATLAB第110期】#保姆级教学 | 基于MATLAB的PAWN全局敏感性分析方法(无目标函数)含特征变量置信区间分析 一、介绍 PAWN(Probabilistic Analysis With Numerical Uncertainties)是一种基于密度的全局敏感性分析(Gl…

DX12 快速教程(2) —— 渲染天蓝色窗口

快速导航 新建项目 "002-DrawSkyblueWindow"DirectX 12 入门1. COM 技术:DirectX 的中流砥柱什么是 COM 技术COM 智能指针 2.创建 D3D12 调试层设备:CreateDebugDevice什么是调试层如何创建并使用调试层 3.创建 D3D12 设备:CreateD…

【合作原创】使用Termux搭建可以使用的生产力环境(八)

前言 在上一篇【合作原创】使用Termux搭建可以使用的生产力环境(七)-CSDN博客中我们讲到了安装百度网盘、VS Code还有java,这篇我打算讲一下最后的编程,还有输入法相关问题解决。众所周知我的本职工作是Java程序猿,因…

VLMs之Gemma 2:PaliGemma 2的简介、安装和使用方法、案例应用之详细攻略

VLMs之Gemma 2:PaliGemma 2的简介、安装和使用方法、案例应用之详细攻略 导读:2024年12月4日,PaliGemma 2是一个基于Gemma 2系列语言模型的开源视觉语言模型 (VLM) 家族。PaliGemma 2 通过提供一个规模化、多功能且开源的VLM家族,…

24.12.26 SpringMVCDay01

SpringMVC 也被称为SpringWeb Spring提供的Web框架,是在Servlet基础上,构建的框架 SpringMVC看成是一个特殊的Servlet,由Spring来编写的Servlet 搭建 引入依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-webmvc<…

国产 HighGo 数据库企业版安装与配置指南

国产 HighGo 数据库企业版安装与配置指南 1. 下载安装包 访问 HighGo 官方网站&#xff08;https://www.highgo.com/&#xff09;&#xff0c;选择并下载企业版安装包。 2. 上传安装包到服务器 将下载的安装包上传至服务器&#xff0c;并执行以下命令&#xff1a; [rootmas…

Java程序设计,使用属性的选项库,轻松实现商品检索的复杂查询(上)

一、背景 本文我们以某商城的商品检索为例,说一说如何使用属性及选项,实现复杂的逻辑表达式的查询。 先贴图,总结出业务需求。 可以通过一系列属性及选项的组合,过滤出用户想要的商品列表。 1、属性 上文中的品牌、分类、屏幕尺寸、CPU型号、运行内存、机身内存、屏幕材…

机器学习(二)-简单线性回归

文章目录 1. 简单线性回归理论2. python通过简单线性回归预测房价2.1 预测数据2.2导入标准库2.3 导入数据2.4 划分数据集2.5 导入线性回归模块2.6 对测试集进行预测2.7 计算均方误差 J2.8 计算参数 w0、w12.9 可视化训练集拟合结果2.10 可视化测试集拟合结果2.11 保存模型2.12 …

WHAT KAN I SAY?Kolmogorov-Arnold Network (KAN)网络结构介绍及实战(文末送书)

一、KAN网络介绍 1.1 Kolmogorov-Arnold Network (KAN)网络结构的提出 2024年4月&#xff0c;来自MIT、加州理工学院、东北大学等团队的研究&#xff0c;引爆了一整个科技圈&#xff1a;Yes We KAN&#xff01; 这种创新方法挑战了多层感知器(Multilayer Perceptron&#xff…

YOLO11改进-模块-引入星型运算Star Blocks

当前网络设计中&#xff0c;“星型运算”&#xff08;逐元素乘法&#xff09;的应用原理未被充分探究&#xff0c;潜力有待挖掘。为解决此问题&#xff0c;我们引入 Star Blocks&#xff0c;其内部由 DW - Conv、BN、ReLU 等模块经星型运算连接&#xff0c;各模块有特定参数。同…

3.银河麒麟V10 离线安装Nginx

1. 下载nginx离线安装包 前往官网下载离线压缩包 2. 下载3个依赖 openssl依赖&#xff0c;前往 官网下载 pcre2依赖下载&#xff0c;前往Git下载 zlib依赖下载&#xff0c;前往Git下载 下载完成后完整的包如下&#xff1a; 如果网速下载不到请使用网盘下载 通过网盘分享的文件…

【理解机器学习中的过拟合与欠拟合】

在机器学习中&#xff0c;模型的表现很大程度上取决于我们如何平衡“过拟合”和“欠拟合”。本文通过理论介绍和代码演示&#xff0c;详细解析过拟合与欠拟合现象&#xff0c;并提出应对策略。主要内容如下&#xff1a; 什么是过拟合和欠拟合&#xff1f; 如何防止过拟合和欠拟…

【婚庆摄影小程序设计与实现】

摘 要 社会发展日新月异&#xff0c;用计算机应用实现数据管理功能已经算是很完善的了&#xff0c;但是随着移动互联网的到来&#xff0c;处理信息不再受制于地理位置的限制&#xff0c;处理信息及时高效&#xff0c;备受人们的喜爱。所以各大互联网厂商都瞄准移动互联网这个潮…

12.26 学习卷积神经网路(CNN)

完全是基于下面这个博客来进行学习的&#xff0c;感谢&#xff01; ​​【深度学习基础】详解Pytorch搭建CNN卷积神经网络LeNet-5实现手写数字识别_pytorch cnn-CSDN博客 基于深度神经网络DNN实现的手写数字识别&#xff0c;将灰度图像转换后的二维数组展平到一维&#xff0c;…

Unity URP多光源支持,多光源阴影投射,多光源阴影接收(优化版)

目录 前言&#xff1a; 一、属性 二、SubShader 三、ForwardLitPass 定义Tags 声明变体 声明变量 定义结构体 顶点Shader 片元Shader 四、全代码 四、添加官方的LitShader代码 五、全代码 六、效果图 七、结语 前言&#xff1a; 哈喽啊&#xff0c;我又来啦。这…

如何使用React,透传各类组件能力/属性?

在23年的时候&#xff0c;我主要使用的框架还是Vue&#xff0c;当时写了一篇“如何二次封装一个Vue3组件库&#xff1f;”的文章&#xff0c;里面涉及了一些如何使用Vue透传组件能力的方法。在我24年接触React之后&#xff0c;我发现这种扩展组件能力的方式有一个专门的术语&am…