<项目代码>YOLOv8 草莓成熟识别<目标检测>

 YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>草莓成熟识别数据集<目标检测>。

数据集下载链接:数据集下载链接

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在runs目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/886658.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django5 2024全栈开发指南(一):框架简介、环境搭建与项目结构

目录 一、Python Web框架要点二、Django流程2.1 Django介绍2.1.1 简介2.1.2 特点2.1.3 MVT模式2.1.4 Django新特性2.1.5 Django学习资料 2.2 搭建Django框架开发环境2.2.1 安装Python语言环境2.2.2 安装Django框架 2.3 创建Django项目2.4 Pycharm创建项目2.5 初试Django52.5.1 …

Flutter:Dio下载文件到本地

import dart:io; import package:dio/dio.dart;main(){// 创建dio对象final dio Dio();// 下载地址var url https://*******.org/files/1.0.0.apk;// 手机端路径String savePath Directory.systemTemp.path/ceshi.apk;print(savePath);downLoad(dio,url,savePath); }downLo…

Golang | Leetcode Golang题解之第564题寻找最近的回文数

题目: 题解: func nearestPalindromic(n string) string {m : len(n)candidates : []int{int(math.Pow10(m-1)) - 1, int(math.Pow10(m)) 1}selfPrefix, _ : strconv.Atoi(n[:(m1)/2])for _, x : range []int{selfPrefix - 1, selfPrefix, selfPrefix …

鸿蒙原生应用开发元服务 元服务是什么?和App的关系?(保姆级步骤)

元服务是什么?和App的关系? 元服务是是一种HarmonyOS轻量应用形态,用户无需安装即可使用,具备随处可及、服务直达、自由流转的特征。 元服务是可以独立部署和运行的程序实体,独立于应用,不依赖应用可独立…

Exadata: 将数据库硬件和软件设计在一起

Engineering Database Hardware and Software Together,是Juan Loaiza在2015 VLDB大会上的Keynotes。虽然是10年前的文章,但其中一些要点一直延续至今,并未改变。 本文将讲解Keynotes摘要和演讲中的要点。 摘要 其中的一些观点&#xff1a…

Windows配置域名映射IP

一、找到 hosts 文件 打开 C:\Windows\System32\drivers\etc 二、添加hosts文件修改、写入权限 右击hosts文件,点击属性 -> 安全 -> Users -> 编辑 -> Users -> 添加修改、写入权限 -> 确定 -> 确定 进入常规,将只读属性关闭 三、…

173. 二叉搜索树迭代器【 力扣(LeetCode) 】

文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 173. 二叉搜索树迭代器 一、题目描述 实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器: BSTIterato…

XXL JOB DockerCompose部署

官网给的方式是 Docker 命令启动,但是用起来太麻烦了,所以用DockerCompose 简化部署 创建数据库,导入 SQL SQL 脚本位置为/xxl-job/doc/db/tables_xxl_job.sql https://raw.githubusercontent.com/xuxueli/xxl-job/refs/heads/master/doc/…

【原创】如何备份和还原Ubuntu系统,非常详细!!

前言 我在虚拟机装了一个xfce4的Ubuntu桌面版,外加输入法、IDEA等,我想将这个虚拟机里的系统直接搬到物理机中,那我可以省的再重新装一遍、配置xfce4桌面、修改一堆快捷键还有配置idea了,那直接说干就干。 本教程基于Ubuntu24.0…

YOLO系列番外——数据偏移与分布不均对模型的影响分析与炫酷的动态分布图代码分享

背景 在深度学习的应用中,数据质量对模型的性能至关重要。随着智能化应用场景的扩展,数据的复杂性不断增加,如何处理数据偏移(Data Shift)和数据分布不均(Data Imbalance)成为了模型训练和部署过…

Shell脚本6 -- 条件判断if

声明: 本文的学习内容来源于B站up主“泷羽sec”视频【shell编程(4)脚本与用户交互以及if条件判断】的公开分享,所有内容仅限于网络安全技术的交流学习,不涉及任何侵犯版权或其他侵权意图。如有任何侵权问题&#xff0c…

ks 小程序sig3

前言 搞了app版的快手之后 (被风控麻了) 于是试下vx小程序版的 抓包调试 小程序抓包问题 网上很多教程, github也有开源的工具代码 自行搜索 因为我们需要调试代码,所以就用了下开源的工具 (可以用chrome的F12功能&a…

hive 统计各项目下排名前5的问题种类

实现指定某项目下的数据效果图如下所示: 其中 ABCDE 为前5名的问题种类,其中A问题有124个(出现了124次) 数据说明: 整个数据集 包含很多项目一个项目 包含很多问题一个问题 选项 可认为是 类别值,所有出…

如何解决将长视频转换为易于处理的 Spacetime Patch 的问题?

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 将长视频转换为易于处理的 Spacetime Patch(时空补丁)是一项挑战,尤其是当视频内容复杂或包含长时间连续场景时。在计算机视觉和视频分析等领域,Spacetim…

[ACTF2020]Upload 1--详细解析

信息收集 题目告诉我们是一道upload,也就是文件上传漏洞题目。 进入界面,是一个灯泡,将鼠标放在图标上就会出现文件上传的相应位置: 思路 文件上传漏洞,先看看有没有前端校验。 在js源码中找到了前端校验&#xff…

机器学习基础06

目录 1.梯度下降 1.1梯度下降概念 1.2梯度下降公式 1.3学习率 1.4实现梯度下降 1.5API 1.5.1随机梯度下降SGD 1.5.2小批量梯度下降MBGD 1.6梯度下降优化 2.欠拟合过拟合 2.1欠拟合 2.2过拟合 2.3正则化 2.3.1L1正则项(曼哈顿距离) 2.3.2…

可认证数据资产合约标准协议(CMIDA-1)意见征集

标准背景 数据资产具备多维度的属性,涵盖行业特性、状态信息、资产类型、存储格式等。数据资产在不同流通主体之间可理解、可流通、可追溯、可信任的重要前提之一是存在统一的标准,缺失统一的标准,数据混乱冲突、一数多源、多样多类等问题将…

为什么 Vue3 封装 Table 组件丢失 expose 方法呢?

在实际开发中,我们通常会将某些常见组件进行二次封装,以便更好地实现特定的业务需求。然而,在封装 Table 组件时,遇到一个问题:Table 内部暴露的方法,在封装之后的组件获取不到。 代码展示为: …

Dolby TrueHD和Dolby Digital Plus (E-AC-3)编码介绍

文章目录 1. Dolby TrueHD特点总结 2. Dolby Digital Plus (E-AC-3)特点总结 Dolby TrueHD 与 Dolby Digital Plus (E-AC-3) 的对比 Dolby TrueHD和Dolby Digital Plus (E-AC-3) 是两种高级的杜比音频编码格式,常用于蓝光影碟、流媒体、影院等高品质音频传输场景。它…

Python Pillow图像编辑

Pillow简介 Pillow 不仅是 PIL 库的“复制版”,而且它又在 PIL 库的基础上增加了许多新的特性。Pillow 发展至今,已经成为了比 PIL 更具活力的图像处理库。 Pillow 的初衷只是想作为 PIL 库的分支和补充,如今它已是“青出于蓝而胜于蓝”。 …