Dockerfile中的RUN、CMD、ENTRYPOINT指令区别

  • RUN在构建过程中在镜像中执行命令。
  • CMD容器创建时的默认命令。(可以被覆盖)
  • ENTRYPOINT容器创建时的主要命令。(不可被覆盖)

指令介绍

1.RUN

在构建过程中在镜像中执行命令,是在 docker build中执行

2.CMD

作用:为启动的容器指定默认要运行的程序,程序运行结束,容器也就结束。CMD 指令指定的程序可被 docker run 命令行参数中指定要运行的程序所覆盖。 在docker run 时运行。

注意:如果 Dockerfile 中如果存在多个 CMD 指令,仅最后一个生效。

CMD <shell 命令> 
CMD ["<可执行文件或命令>","<param1>","<param2>",...] 
CMD ["<param1>","<param2>",...]  # 该写法是为 ENTRYPOINT 指令指定的程序提供默认参数

3.ENTRYPOINT

类似于 CMD 指令,但其不会被 docker run 的命令行参数指定的指令所覆盖,而且这些命令行参数会被当作参数送给 ENTRYPOINT 指令指定的程序。

但是, 如果运行 docker run 时使用了 --entrypoint 选项,将覆盖 ENTRYPOINT 指令指定的程序。

优点:在执行 docker run 的时候可以指定 ENTRYPOINT 运行所需的参数。

注意:如果 Dockerfile 中如果存在多个 ENTRYPOINT 指令,仅最后一个生效。

ENTRYPOINT ["<executeable>","<param1>","<param2>",...]

CMD和ENTRYPOINT区别以及搭配使用

ENTRYPOINT 指令和 CMD 指令的工作方式类似,但它们之间有一个关键区别:ENTRYPOINT 指定的程序不会被 docker run 命令行参数覆盖,而命令行参数会被当作参数传递给 ENTRYPOINT 指定的程序

理解示例

1. Dockerfile 示例

假设我们在 Dockerfile 中使用 ENTRYPOINT 指令:

FROM ubuntu
ENTRYPOINT ["echo", "Hello"]

在这个 Dockerfile 中,echoENTRYPOINT 指定的程序,而 "Hello" 是它的默认参数。

2. 运行容器时传递参数

当你使用 docker run 运行镜像时,如果你在命令行中传递了额外的参数,这些参数会被附加到 ENTRYPOINT 指定的程序之后,作为它的参数。

例如:

docker run my-ubuntu World

这个命令不会覆盖 ENTRYPOINT,而是将 World 作为参数传递给 echo,最终执行的命令是:

echo Hello World

输出结果:

Hello World

在这个例子中,docker run my-ubuntu World 将命令行参数 World 传递给了 echo 命令,使得最终的执行效果是输出 Hello World

3. 与 CMD 的区别

如果你在 Dockerfile 中使用的是 CMD 而不是 ENTRYPOINT,那么 docker run 中的参数会完全覆盖 CMD 指定的默认命令。

例如:

FROM ubuntu
CMD ["echo", "Hello"]

运行 docker run my-ubuntu World 时,World 会覆盖 CMD 中的 echo Hello,最终执行的命令是:

World

这会导致 docker: Error response from daemon: OCI runtime create failed 的错误,因为 World 不是有效的命令。

4. 结合 CMDENTRYPOINT

你还可以结合 ENTRYPOINTCMD 来提供更灵活的默认行为。例如:

FROM ubuntu
ENTRYPOINT ["echo"]
CMD ["Hello"]

在这种情况下,ENTRYPOINT 始终会执行 echo,而 CMD 中的 "Hello" 是默认参数。如果你运行:

docker run my-ubuntu

输出结果是:

Hello

但是,如果你运行:

docker run my-ubuntu World

这时,World 会覆盖 CMD"Hello",并作为参数传递给 echo,输出:

World

总结

  • ENTRYPOINT 不会被 docker run 命令行参数覆盖,命令行参数会传递给 ENTRYPOINT 指定的程序。
  • CMD 可以被 docker run 覆盖,且默认参数会在没有额外命令行参数时生效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879398.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ | Leetcode C++题解之第394题字符串解码

题目&#xff1a; 题解&#xff1a; class Solution { public:string src; size_t ptr;int getDigits() {int ret 0;while (ptr < src.size() && isdigit(src[ptr])) {ret ret * 10 src[ptr] - 0;}return ret;}string getString() {if (ptr src.size() || src[…

Nacos下载和启动

Nacos是什么&#xff1f; 一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台 下载 https://github.com/alibaba/nacos/releases/tag/2.1.1启动 将下载好的Nacos解压缩&#xff0c;然后到bin目录下打开cmd 输入指令&#xff1a;startup.cmd -m standalone 出…

工业大模型市场图谱:53个工业大模型全面梳理

工业场景要求严谨、容错率低&#xff0c;核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0&#xff0c;因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。 根据沙丘智库发布的《2024年中国工业大模型应用跟踪报告》&#xff0c;工业大模型是指在…

supabase链接vecs文档

使用Supabase链接本地数据库 Vecs 如何使用本地数据库工作。确保机器上安装了Supabase CLI。 # Initialize your project supabase init# Start Postgres supabase startSupabase vecs同步数据 vecs官方文档 创建集合 import vecs #下面这一行是本地的postgre数据库连接 #…

Nginx快速使用

如果本系列文章对您有帮助&#xff0c;可以 star 一下我的 limou-learn-note&#xff0c;求求惹(๑&#xff1e; &#xff1c;)☆♡~ 叠甲&#xff1a;以下文章主要是依靠我的实际编码学习中总结出来的经验之谈&#xff0c;求逻辑自洽&#xff0c;不能百分百保证正确&#xff…

37拼购:电商新风尚,共享双赢的购物革命

随着2024年电商市场的日益繁荣&#xff0c;商品海洋中的同质化问题愈发严峻&#xff0c;消费者在茫茫商海中寻觅独特价值的难度陡增。在此背景下&#xff0c;一种名为“37悦享拼”的创新电商模式横空出世&#xff0c;它巧妙融合了私域社交与电商精髓&#xff0c;旨在打破传统壁…

YOLOv8+Deepsort+PyQt+GUI 语义分割+目标检测+姿态识别 三者合一(集成于一套系统)综合视觉分析系统

综合视觉分析系统 技术栈&#xff1a; YOLOv8&#xff1a;用于目标检测&#xff0c;是一个快速且准确的目标检测框架。DeepSORT&#xff1a;用于目标跟踪&#xff0c;结合了深度学习特征提取和卡尔曼滤波器来预测目标轨迹。GUI&#xff1a;提供一个直观易用的图形用户界面&am…

随着Batch size增加,最佳learning rate如何选择?

最近读到《Surge Phenomenon in Optimal Learning Rate and Batch Size Scaling》这篇论文&#xff0c;里面通过实验和理论证明了learning rate和batch size之间的关系&#xff0c;觉得很有意思&#xff0c;就简答写个blog记录下。 1. 简介 在影响模型训练效果的所有参数中&a…

顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测

顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测 目录 顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测&#xff08;程序可以作为JCR…

录屏工具 win10:优化你的Windows 10屏幕录制体验,高清好用录屏软件推荐

在数字时代&#xff0c;屏幕录制已成为日常工作和娱乐中不可或缺的一部分。无论是制作教程、录制游戏高光时刻&#xff0c;还是进行远程协作&#xff0c;一个好的录屏工具都是你成功的关键。Windows 10作为全球广泛使用的操作系统&#xff0c;其自带的录屏工具已经为许多用户所…

【Go】Go语言介绍与开发环境搭建

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

大语言模型之ICL(上下文学习) - In-Context Learning Creates Task Vectors

本文译自 《In-Context Learning Creates Task Vectors》 —— 论文中的作者也在用LLaMA模型&#xff0c;笔者自我感觉拉近和世界顶级人才的距离&#xff0c;哈哈内容较长&#xff0c;如想看结论直接看 摘要、介绍与结论几个章节即可&#xff0c;看细节请看目录索引。经验风险最…

分类预测|2024年最新优化算法鹦鹉优化器PO|基于鹦鹉优化SVM支持向量机数据分类预测Matlab程序PO-SVM

分类预测|2024年最新优化算法鹦鹉优化器PO|基于鹦鹉优化SVM支持向量机数据分类预测Matlab程序PO-SVM 文章目录 一、基本原理**原理****PO-SVM 流程****总结** 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 PO-SVM 是一种将鹦鹉优化算法&#xff08;Parrot Opti…

机器学习 第8章 集成学习

目录 个体与集成BoostingBagging与随机森林Bagging随机森林 结合策略平均法投票法学习法 个体与集成 定义&#xff1a;集成学习&#xff0c;也叫多分类器系统、基于委员会的学习等&#xff0c;它是一种通过结合多个学习器来构建一个更强大的学习器的技术。如下图所示 在这里&a…

计算机网络八股总结

这里写目录标题 网络模型划分&#xff08;五层和七层&#xff09;及每一层的功能五层网络模型七层网络模型&#xff08;OSI模型&#xff09; 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址&#xff0c;子…

新能源汽车 BMS 学习笔记篇——如何选择继电器 MOS 管作为开关

序&#xff1a;继电器和 MOSFET&#xff08;俗称 MOS 管&#xff09;都可以用作 BMS&#xff08;Battery Management System&#xff0c;电池管理系统&#xff09; 中控制电池充放电的开关&#xff0c;但它们在原理、结构和特性上存在一些区别&#xff0c;以下总结它们之间主要…

.net core 通过Sqlsugar生成实体

通过替换字符串的方式生成代码&#xff0c;其他代码也可以通这种方式生成 直接上代码 设置模板 将这几个模板文件设置为&#xff1a;嵌入资源 模板内容&#xff1a; using SqlSugar;namespace {Namespace}.Domain.Admin.{ModelName}; /// <summary> /// {TableDisplay…

重学SpringBoot3-SpringApplicationRunListener

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-SpringApplicationRunListener 1. 基本作用2. 如何实现2.1. 创建SpringApplicationRunListener2.2. 注册SpringApplicationRunListener2.3. 完整示例 3.…

跨国公司撤出背后的启示:中国IT产业的挑战与机遇

目录 前言 1. 全球化背景下的战略调整 2. 中国IT人才的应对之策 3. 中国IT产业的机遇与挑战 4. 未来的中国IT产业&#xff1a;自主创新与全球化并行 5. 结语 相关推荐 前言 IBM中国近日宣布撤出其在华两大研发中心&#xff0c;这一决定在IT行业内引发了广泛的讨论和思考…

iceoryx共享内存通信

共享内存原理 当POSIX系统中的进程启动时,它会被赋予自己的虚拟地址空间。 虚拟地址空间跨越的范围对于不同的进程可能是相同的,但是在特定地址可访问的数据对于每个进程可能是不同的。 在进程的虚拟地址空间内,有许多“内存区域”用于加载或映射数据。这些内存区域通常是…