3C电子胶黏剂在手机制造方面有哪些关键的应用

3C电子胶黏剂在手机制造方面有哪些关键的应用

3C电子胶黏剂在手机制造中扮演着至关重要的角色,其应用广泛且细致,覆盖了手机内部组件的多个层面,确保了设备的可靠性和性能。以下是电子胶在手机制造中的关键应用:

手机主板用胶:

芯片封装与粘接:使用环氧胶黏剂、导热导电胶,确保芯片与主板的稳定连接和散热。

灌封与散热:通过导热胶系列,提高热管理性能,减少热应力。

底部填充胶与UV胶:用于精确粘接和快速固化,增强电路板上元件的固定。

摄像头模组:

使用UV胶和低温固化环氧胶固定镜头与底座,确保光学性能不受影响。

侧按键与FPC天线:

UV胶和快干胶用于固定音量键、开关机键,以及FPC天线与机壳的粘接。

显示模组:

屏幕与边框粘接采用聚氨酯热熔胶、UV胶等,确保密封性和防尘防水。

光学透明胶(OCA):用于粘接触摸屏与LCD或OLED显示屏,提供高透明度和良好的触控性能。

摄像模组与马达连线:

UV胶、快干胶、环氧树脂胶用于摄像模组内部组件的粘接,以及马达连线的固定。

音腔盒与LOGO:

音腔盒盖固定使用UV胶、瞬干胶等,LOGO固定则偏好热熔压敏胶、有机硅胶黏剂。

粘接与固定:

双组分结构胶系列,提供高粘接强度,确保组件长期可靠性。

导热与散热:

导热凝胶系列,有效降低热阻,优化散热路径。

防护与密封:

UV湿气三防胶等,提供防潮、防腐蚀保护,增强电子组件的环境适应性。

密封胶用于电池盖粘接,确保电气绝缘和物理密封。

窄边距Underfill技术:

解决0.2mm极窄溢胶宽度挑战,确保芯片与PCB间无空穴、无气泡,采用斜式喷胶技术提高精度。

元器件包封:

Switch点胶技术,如tact switch的焊包封,实现100%通过率和精准溢胶控制。

窄边框热熔胶应用:

在屏幕边框粘接中,应对小间隙挑战,确保牢固粘接同时不影响显示效果。

这些应用不仅提高了手机的组装效率,还增强了产品的耐用性和用户使用体验。这些胶水和粘合剂的选择不仅基于它们的物理化学性能,还考虑到了环保要求以及生产工艺的兼容性。随着技术的不断进步,对电子胶的性能要求也在不断提高,包括更高的耐温性、更强的粘接力、更快的固化速度以及更好的环保特性,以适应更小型化、高性能的手机设计需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879326.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

率先搭载存内计算AI芯片,维迈通引领骑行通讯降噪革新

近日,高端骑行头盔耳机领导品牌维迈通(VIMOTO)三款新品XR、V10S、V10X全平台正式发售,创新搭载了知存科技(Witmem)高能效存内计算AI芯片,为骑行爱好者带来更极致的AI降噪体验。 作为一家专注摩托…

状压DP

状压DP 对于数据范围n<20的可以考虑状压DP 1.蒙德里安的梦想 题目描述 求把 N M NM NM 的棋盘分割成若干个 12 的的长方形&#xff0c;有多少种方案。 例如当$ N2&#xff0c;M4$ 时&#xff0c;共有 5 种方案。当 N 2 &#xff0c; M 3 N2&#xff0c;M3 N2&…

windows 创建新用户,并分配到指定组

右击电脑 -> 点击管理 在右边右击&#xff0c;选择新用户&#xff0c;输入相关信息创建 创建用户后&#xff0c;选择用户&#xff0c;右击&#xff0c;选择属性&#xff0c;添加 点击高级 点击立即查找&#xff0c;可以搜索出所有可用的组&#xff0c;为其选择即可

Java XML

1、XML文件介绍 配置文件&#xff1a;用来保存设置的一些东西。 拿IDEA来举例&#xff0c;比如设置的背景图片&#xff0c;字体信息&#xff0c;字号信息和主题信息等等。 &#xff08;1&#xff09;以前是用txt保存的&#xff0c;没有任何优点&#xff0c;而且不利于阅读&a…

停车位检测-停车场车位识别

YOLO Parking Spot 概述 停车场获取的图像训练了四个YOLO模型来检测车辆。目标是收集信息&#xff0c;并可能开发一种停车解决方案以改善交通流量并优化空间利用率。通过识别汽车&#xff0c;我们生成了一份报告&#xff0c;其中包含图像细节&#xff0c;如可用停车位的数量、…

官宣:Zilliz 在亚马逊云科技中国区正式开服!

01 Zilliz Cloud 正式上线亚马逊云科技宁夏区服务 9 月 4 日&#xff0c;Zilliz 正式官宣&#xff0c; Zilliz Cloud 正式上线亚马逊云科技在宁夏区的云服务。至此&#xff0c;Zilliz Cloud 已实现全球 5 大云 19 个节点 的全覆盖&#xff0c;成为全球首个提供海内外多云服务的…

《机器学习》—— SVD奇异值分解方法对图像进行压缩

文章目录 一、SVD奇异值分解简单介绍二、代码实现—SVD奇异值分解方法对图像进行压缩 一、SVD奇异值分解简单介绍 SVD&#xff08;奇异值分解&#xff09;是一种在信号处理、统计学、线性代数、机器学习等多个领域广泛应用的矩阵分解方法。它将任何 mn 矩阵 A 分解为三个特定矩…

从0书写一个softmax分类 李沐pytorch实战

输出维度 在softmax 分类中 我们输出与类别一样多。 数据集有10个类别&#xff0c;所以网络输出维度为10。 初始化权重和偏置 torch.norma 生成一个均值为 0&#xff0c;标准差为0.01,一个形状为size(num_inputs, num_outputs)的张量偏置生成一个num_outputs 10 的一维张量&a…

Kubernetes从零到精通(10-服务Service)

Service简介 Deployment这种工作负载能管理我们应用Pod的副本数&#xff0c;并实现动态的创建和销毁&#xff0c;所以Pod本身是临时资源&#xff08;IP随时可能变化&#xff09;。现在如果某组Pod A需要访问另一组Pod B&#xff0c;A就需要在应用的配置参数里动态跟踪并更改B的…

【数学建模】相关系数

第一部分&#xff1a;相关系数简介 总体与样本&#xff1a; 总体&#xff1a;指研究对象的全体&#xff0c;比如全国人口普查数据。样本&#xff1a;从总体中抽取的一部分个体&#xff0c;如通过问卷调查收集的学生数据。 皮尔逊相关系数&#xff1a; 总体皮尔逊相关系数&…

Linux 8250串口控制器

1 8250串口类型的识别 Intel HW都使用DesignWare 8250&#xff1a; drivers/mfd/intel-lpss-pci.c drivers/tty/serial/8250/8250_dw.c IIR寄存器的高2位bit7、bit6用来识别8250串口的类型&#xff1a; 0 - 8250&#xff0c;无FIFO 0 - 并且存在SCR&#xff08;Scratch registe…

安科瑞Acrel-1000DP分布式光伏监控系统平台的设计与应用-安科瑞 蒋静

针对用户新能源接入后存在安全隐患、缺少有效监控、发电效率无法保证、收益计算困难、运行维护效率低等通点&#xff0c;提出的Acrel-1000DP分布式光伏监控系统平台&#xff0c;对整个用户电站全面监控&#xff0c;为用户实现降低能源使用成本、减轻变压器负载、余电上网&#…

如何构建大数据治理平台,助力企业数据决策

建设背景 &#xff08;1&#xff09;什么是数据资产 资产由企业及组织拥有和控制&#xff0c;能够提供增值服务、带来经济利益的重要资源。 资产不但需要管理&#xff0c; 更需要运营。 &#xff08;2&#xff09;数据资产运营中的问题 数据资产运营中存在的问题主要包括以下…

CANopen协议的理解

本文的重点是对CANopen协议的理解&#xff0c;不是编程实现 参考链接 canopen快速入门 1cia301协议介绍_哔哩哔哩_bilibili CANopen是什么&#xff1f; CANopen通讯基础&#xff08;上&#xff09;_哔哩哔哩_bilibili CANopen概述 图1. CAN报文标准帧的格式 CAN的报文可简单…

docker-compose 部署 flink

下载 flink 镜像 [rootlocalhost ~]# docker pull flink Using default tag: latest latest: Pulling from library/flink 762bedf4b1b7: Pull complete 95f9bd9906fa: Pull complete a880dee0d8e9: Pull complete 8c5deab9cbd6: Pull complete 56c142282fae: Pull comple…

Redis搭建集群

功能概述 Redis Cluster是Redis的自带的官方分布式解决方案&#xff0c;提供数据分片、高可用功能&#xff0c;在3.0版本正式推出。 使用Redis Cluster能解决负载均衡的问题&#xff0c;内部采用哈希分片规则&#xff1a; 基础架构图如下所示&#xff1a; 图中最大的虚线部分…

路由器WAN口和LAN口有什么不一样?

“ 路由器WAN口和LAN口的区别&#xff0c;WAN是广域网端口&#xff0c;LAN是本地网端口。WAN主要用于连接外部网络&#xff0c;而LAN用来连接家庭内部网络&#xff0c;两者主要会在标识上面有区别。以往大部分路由器的WAN只有一个&#xff0c;LAN口则有四个或以上&#xff0c;近…

《深度学习》—— 神经网络基本结构

前言 深度学习是一种基于神经网络的机器学习算法&#xff0c;其核心在于构建由多层神经元组成的人工神经网络&#xff0c;这些层次能够捕捉数据中的复杂结构和抽象特征。神经网络通过调整连接各层的权重&#xff0c;从大量数据中自动学习并提取特征&#xff0c;进而实现预测或…

Banana Pi BPI-SM9 AI 计算模组采用算能科技BM1688芯片方案设计

产品概述 香蕉派 Banana Pi BPI-SM9 16-ENC-A3 深度学习计算模组搭载算能科技高集成度处理器 BM1688&#xff0c;功耗低、算力强、接口丰富、兼容性好。支持INT4/INT8/FP16/BF16/FP32混合精度计算&#xff0c;可支持 16 路高清视频实时分析&#xff0c;灵活应对图像、语音、自…

Python面试宝典第48题:找丑数

题目 我们把只包含质因子2、3和5的数称作丑数&#xff08;Ugly Number&#xff09;。比如&#xff1a;6、8都是丑数&#xff0c;但14不是&#xff0c;因为它包含质因子7。习惯上&#xff0c;我们把1当做是第一个丑数。求按从小到大的顺序的第n个丑数。 示例 1&#xff1a; 输入…