分布式搜索引擎01

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

  • 在电商网站搜索商品

  • 在百度搜索答案

  • 在打车软件搜索附近的车

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

1.1.3.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考课前资料:

1.4.2.分词器

参考课前资料:

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词

  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度

  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典

  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • <

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/87576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java函数式接口(Consumer、Function、Predicate、Supplier)详解及代码示例

函数式接口 java.util.function : Consumer :消费型函数接口 void accept(T t) Function :函数型接口 R apply(T t) Predicate :判断型接口 boolean test(T t) Supplier :供给型接口 T get() Consumer - 消费型函数接口 该接口代表了一个接受一个参数并且不返回结果的操作。…

【Less-CSS】初识Less,使编写 CSS 变得简洁

初识Less&#xff0c;使编写 CSS 变得简洁 1.Less简述2.LESS 原理及使用方式3.示例4.less语法5.Easy Less插件 作为一门标记性语言&#xff0c;CSS 的语法相对简单&#xff0c;对使用者的要求较低&#xff0c;但同时也带来一些问题&#xff1a;CSS 需要书写大量看似没有逻辑的代…

Python爬虫从端到端抓取网页

网页抓取和 REST API 简介 网页抓取是使用计算机程序以自动方式从网站提取和解析数据的过程。这是创建用于研究和学习的数据集的有用技术。虽然网页抓取通常涉及解析和处理 HTML 文档&#xff0c;但某些平台还提供 REST API 来以机器可读格式&#xff08;如 JSON&#xff09;检…

【C++】C++ 类中的 this 指针用法 ③ ( 全局函数 与 成员函数 相互转化 | 有参构造函数设置默认参数值 | 返回匿名对象与返回引用 )

文章目录 一、全局函数 与 成员函数 相互转化1、成员函数转为全局函数 - 多了一个参数2、全局函数转为成员函数 - 通过 this 指针隐藏操作数 二、有参构造函数设置默认参数值三、返回匿名对象与返回引用四、完整代码示例 一、全局函数 与 成员函数 相互转化 1、成员函数转为全局…

一、vue2的基础语法巩固

一、定义&#xff1a;是一个渐进式的JavaScript框架 二、特点&#xff1a; 减少了大量的DOM操作编写 &#xff0c;可以更专注于逻辑操作分离数据和界面的呈现&#xff0c;降低了代码耦合度(前端端分离)支持组件化开发&#xff0c;更利于中大型项目的代码组织 vue2核心功能&a…

【Linux】生产消费模型 + 线程池

文章目录 &#x1f4d6; 前言1. 生产消费模型2. 阻塞队列2.1 成员变量&#xff1a;2.2 入队(push)和出队(pop)&#xff1a;2.3 封装与测试运行&#xff1a;2.3 - 1 对代码进一步封装2.3 - 2 分配运算任务2.3 - 3 测试与运行 3. 循环阻塞队列3.1 POSIX信号量&#xff1a;3.1 - 1…

WKB近似

WKB方法用于研究一种特定类型的微分方程的全局性质 很有用这种特定的微分方程形如&#xff1a; 经过一些不是特别复杂的推导&#xff0c;我们可以得到他的WKB近似解。 该近似解的选择取决于函数和参数的性质同时&#xff0c;我们默认函数的定义域为当恒大于零,时&#xff1a; 当…

44.java教程

目录 一、Java 教程。 &#xff08;1&#xff09;我的第一个 JAVA 程序。 &#xff08;2&#xff09;Java 简介。 &#xff08;2.1&#xff09;java简介。 &#xff08;2.2&#xff09;主要特性。 &#xff08;2.3&#xff09;发展历史。 &#xff08;2.4&#xff09;J…

iOS应用程序的签名、重签名和安装测试

目录 前言 打开要处理的IPA文件 设置签名使用的证书和描述文件 开始ios ipa重签名 前言 ipa编译出来后&#xff0c;或者ipa进行修改后&#xff0c;需要进行重新签名才能安装到测试手机&#xff0c;或者提交app store供apple 商店审核上架。ipaguard有签名和重签名功能&…

吴恩达ChatGPT《Finetuning Large Language Models》笔记

课程地址&#xff1a;https://learn.deeplearning.ai/finetuning-large-language-models/lesson/1/introduction Introduction 动机&#xff1a;虽然编写提示词&#xff08;Prompt&#xff09;可以让LLM按照指示执行任务&#xff0c;比如提取文本中的关键词&#xff0c;或者对…

React中setState的原理及深层理解

1.为什么使用setState React并没有实现类似于Vue2中的Object.defineProperty或者Vue3中的Proxy的方式来监听数据的变化 我们必须通过setState来告知React数据已经发生了变化 setState方法是从Component中继承过来的。 2.setState异步更新 setState设计为异步&#xff0c;可…

PHY6230低成本遥控灯控芯片国产蓝牙BLE5.2 2.4G SoC

高性价比的低功耗高性能蓝牙5.2系统级芯片&#xff0c;适用多种PC/手机外设连接场景。 高性能多模射频收发机&#xff1a; 通过硬件模块的充分复用实现高性能多模数字收发机。发射机&#xff0c;最大发射功率10dBm&#xff1b;BLE 1Mbps速率接收机灵敏度达到-96dBm&#xff1…

解决Vue设置图片的动态src不生效的问题

一、问题描述 在vue项目中&#xff0c;想要动态设置img的src时&#xff0c;此时发现图片会加载失败。在Vue代码中是这样写的&#xff1a; 在Vue的data中是这样写的&#xff1a; 我的图片在根目录下的static里面&#xff1a; 但是在页面上这个图片却无法加载出来。 二、解决方案…

五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)

和支持向量分类(Nu-Support Vector Classification)&#xff0c;与 SVC 类似&#xff0c;但使用一个参数来控制支持向量的数量&#xff0c;其实现基于libsvm 一、算法思路 本质都是SVM中的一种优化&#xff0c;原理都类似&#xff0c;详细算法思路可以参考博文&#xff1a;三…

10分钟让你拿下Linux常用命令,网安运维测试人员必掌握!

文章目录 一、目录操作 1、批量操作 二、文件操作三、文件内容操作&#xff08;查看日志&#xff0c;更改配置文件&#xff09; 1、grep(检索文件内容)2、awk(数据统计)3、sed(替换文件内容)4、管道操作符|5、cut(数据裁剪) 四、系统日志位置五、创建与删除软连接六、压缩和解压…

虹科案例 | ELPRO帮助客户实现符合GDP标准的温度监测和高效的温度数据管理

文章来源&#xff1a;虹科环境监测技术 点击阅读原文&#xff1a;https://mp.weixin.qq.com/s/wwIPx_GK3ywqWr5BABC4KQ 在本案例研究中&#xff0c;虹科ELPRO帮助客户 ● 实施了温度监测解决方案&#xff0c;以一致的数据结构获取各国和各种运输方式的数据; ● 通过将温度数据上…

https跳过SSL认证时是不是就是不加密的,相当于http?

https跳过SSL认证时是不是就是不加密的,相当于http?&#xff0c;其实不是&#xff0c;HTTPS跳过SSL认证并不相当于HTTP&#xff0c;也不意味着没有加密。请注意以下几点&#xff1a; HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;本质上是在HTTP的基础上…

【postgresql】ERROR: column “xxxx.id“ must appear in the GROUP BY

org.postgresql.util.PSQLException: ERROR: column "xxx.id" must appear in the GROUP BY clause or be used in an aggregate function 错误&#xff1a;列“XXXX.id”必须出现在GROUP BY子句中或在聚合函数中使用 在mysql中是正常使用的&#xff0c;在postgre…

数字IC笔试千题解--单选题篇(二)

前言 出笔试题汇总&#xff0c;是为了总结秋招可能遇到的问题&#xff0c;做题不是目的&#xff0c;在做题的过程中发现自己的漏洞&#xff0c;巩固基础才是目的。 所有题目结果和解释由笔者给出&#xff0c;答案主观性较强&#xff0c;若有错误欢迎评论区指出&#xff0c;资料…

投资理财知识分享:100个金融知识专业术语

大家好&#xff0c;我是财富智星&#xff0c;今天跟大家分享一下投资理财知识方面100个金融知识专业术语&#xff0c;希望能帮助大家了解更多金融知识。 1. 股票&#xff1a;代表对一家公司所有权的证券。 2. 债券&#xff1a;公司或政府发行的借款证券。 3. 投资组合&#xff…